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Preface

In this work we prove persistence of normally hyperbolic invariant manifolds. This result is well-known
when the invariant manifold is compact; we extend this to a setting where the invariant manifold as well
as the ambient space are allowed to be noncompact manifolds. The ambient space is assumed to be a
Riemannian manifold of bounded geometry.

Normally hyperbolic invariant manifolds (NHIMs) are a generalization of hyperbolic fixed points. Many
of the concepts, results and proofs for hyperbolic fixed points carry over to NHIMs. Two important
properties that generalize to NHIMs are persistence of the invariant manifold and existence of stable
and unstable manifolds.

We shall focus on the first property. Persistence of a hyperbolic fixed point follows as a straightforward
application of the implicit function theorem. For a NHIM the situation is significantly more subtle,
although the basic idea is the same. In the case of a hyperbolic fixed point we only have stable and
unstable directions. When we consider a NHIM, there is a third direction, tangent to the manifold
itself. The dynamics in the tangential directions is assumed to be dominated by the stable and unstable
directions in terms of the respective Lyapunov exponents. Thus the dynamics on the invariant manifold
is approximately neutral and the dynamics in the normal directions is hyperbolic; hence the name
normally hyperbolic. The system is called r -normally hyperbolic if the spectral gap condition holds
that the tangential dynamics is dominated by a factor r ≥ 1. An r -NHIM persists under C 1 small
perturbations of the system. The persistent manifold will be C r if the system is, but it may not be
more smooth, even if the system is C∞ or analytic. This can also be formulated as follows: r -normal
hyperbolicity is an ‘open property’ in the space of C r systems under the C 1 topology. The description
above shows that the spectral properties of NHIMs and center manifolds are similar. The difference is
that NHIMs are globally uniquely defined, while center manifolds are not.

There are two basic methods of proof for hyperbolic fixed points and center manifolds: Hadamard’s
graph transform and Perron’s variation of constants integral method. Both can be extended to prove
persistence of NHIMs, as well as existence of its stable and unstable manifolds. We employ the Perron
method.

Both methods of proof construct a contraction scheme to find the persistent NHIM (and a similar
contraction scheme can be used to find its stable and unstable manifolds). Heuristically, we can
construct the implicit function F (M , v) =Φt (M)−M = 0, where M is the NHIM and Φt is the flow of the
vector field v after some fixed time t . Normal hyperbolicity of M implies that D1F is invertible. Hence,
there is a function M̃ =G(ṽ) that maps perturbed vector fields ṽ to persistent manifolds M̃ , at least in a
neighborhood of v . This idea does not work directly for higher derivatives. An inductive scheme can be
set up that typically uses some form of the fiber contraction theorem. This scheme will break down after
r iterations, hence the limited smoothness. Example 1.1 shows that this is an intrinsic problem.
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To tackle the noncompact case, we replace compactness by uniformity conditions. These include
uniform continuity and global boundedness of the vector field and the invariant manifold and their
derivatives up to order r . We require additional uniformity conditions on the ambient manifold, namely
‘bounded geometry’. This means that the Riemannian curvature is globally bounded, and as a result we
have a uniform atlas which allows us to retain uniform estimates throughout all constructions in the
proof.

Organization of the book

This book is organized as follows. In the introduction, we give a broad overview of the theory of NHIMs
with references to more details in the later chapters. We start by describing how NHIMs are related to
hyperbolic fixed points and center manifolds. Then we give some basic examples and motivation for
studying the noncompact case. We give a brief overview of the history and literature and compare the
two methods of proof in the basic setting of a hyperbolic fixed point. Then we continue to introduce
the concept of bounded geometry and a precise statement of the main result of this work and discuss
its relation to the literature. We describe a few extensions and details of the results and conclude the
chapter with notation used throughout this book.

Chapter 2 treats Riemannian manifolds of bounded geometry. We first introduce the definition of
bounded geometry and some basic implications. We explicitly work out the relation between curvature
and holonomy in Section 2.2. This we use in Section 3.7 to prove smoothness of the persistent manifold.
In the subsequent sections we develop the theory required to prove persistence of noncompact NHIMs
in general ambient manifolds of bounded geometry. We extend results for submanifolds to uniform
versions in bounded geometry, to finally show how to reduce the main theorem to a setting in a trivial
bundle. A number of these results are new and may be of independent interest, namely the uniform
tubular neighborhood theorem, the uniform smooth approximation of a submanifold, and a uniform
embedding into a trivial bundle.

In Chapter 3 we finally prove the main result in the trivial bundle setting. We first state both this and the
general version of the main theorem and discuss these in full detail. We include a precise comparison
with results in the literature, followed by an outline of the proof. Section 3.3 contains a discussion of
the differences to the compact case and presents detailed examples to illustrate these. Then we start
the actual proof. We first prepare the system: we put it in a suitable form and obtain estimates for the
perturbed system. Then we prove that there exists a unique persistent invariant manifold and that it
is Lipschitz. Secondly, we set up an elaborate scheme in Section 3.7 to prove that this manifold is C r

smooth by induction over the smoothness degree.

In Chapter 4 we discuss how the main result can be extended in a number of different ways that may
specifically be useful for applications. We show how time and parameter dependence can be added and
we present a slightly more general definition of overflow invariance that might be applicable to systems
that are not overflowing invariant under the standard definition.

Finally, the appendices contain technical and reference material. These are referenced from the main
text where appropriate. Appendix A shows an important idea that permeates this work: the implicit
function theorem allows for explicit estimates in terms of the input, hence it ‘preserves uniformity
estimates’. This can then directly be applied to dependence of a flow on the vector field. In Appendix B,
the Nemytskii operator is introduced as a technique to prove continuity of post-composition with
a function. This is an essential basic part in the smoothness proof, together with the results on the
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exponential growth behavior of higher derivatives of flows in Appendix C. Here, we also develop a
framework to work with higher derivatives on Riemannian manifolds. The last appendices include the
fiber contraction theorem of Hirsch and Pugh that is used in the smoothness proof, Alekseev’s nonlinear
variation of constants integral defined on manifolds, and a brief overview of those parts of Riemannian
geometry that we use.

What is (not) new

Normal hyperbolicity can nowadays be called a classical subject; it was first formulated and studied in
the late sixties and seventies, see the historical overview in Section 1.3. Although initial results were
formulated for compact NHIMs, more recent work by Sakamoto and especially Bates, Lu, and Zeng have
brought this to the noncompact setting, and even to semi-flows in Banach spaces.

The specific aspect that is new in this work is the differential geometric context in which our results on
noncompact NHIMs are formulated. Uniformity of the ambient space seems not to have been addressed
before in the literature, and our use of bounded geometry allows us to extend persistence of NHIMs
to this setting, see Section 1.5 and Chapter 2. Additionally, some of our results on bounded geometry
appear to be new, including the uniform tubular neighborhood theorem and the theorem on uniform
smooth approximation of a submanifold.

The ‘core’ persistence proof itself is based on the Perron method; it can probably be replaced by the
proof of Bates, Lu, and Zeng, that is based on the graph transform, when taking into account the
necessary bounded geometry technical details from Chapter 2. Our proof uses ideas of Henry and
Vanderbauwhede and Van Gils to extend the Perron method to NHIMs and higher smoothness. A novel
aspect is that we develop these ideas on a trivial bundle with a bounded geometry manifold as base. This
requires a whole framework to be set up, including representations of higher jets of a flow in Appendix C
and formal tangent bundles of spaces of curves (see Section 3.7.4) to study derivatives of the Perron
contraction operator. These ideas might be of interest in other contexts of dynamics in noncompact
differential geometry.

Finally, our Definition 4.4 of a priori overflowing invariance might be new (although probably not
surprising to experts in the field) and could prove useful for certain applications where the original
definition of over- or inflowing invariance does not hold.
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Chapter 1

Introduction

The basics of the theory of hyperbolic dynamics date back to the beginning of the 20th century, and the
general formulation of the theory of normally hyperbolic systems was stated around 1970. Since then,
many people have extended the theory, and even more people have applied it to problems in all kinds
of areas.

Normally hyperbolic invariant manifolds are important fundamental objects in dynamical systems the-
ory. They are useful in understanding global structures and can also be used to simplify the description
of the dynamics in, for example, slow-fast or singularly perturbed systems.

In this work, we are specifically interested in noncompact normally hyperbolic invariant manifolds. We
extend classical results that were previously only formulated for compact manifolds. However, in many
applications the manifold is not compact, so an extension of the theory to the general noncompact case
allows one to attack these problems in their natural context. The main result of this work is an extension
of the theorem on persistence of normally hyperbolic invariant manifolds to a general noncompact
setting in Riemannian manifolds of bounded geometry type.

1.1 Normally hyperbolic invariant manifolds

We should first point out that the theory of (normally) hyperbolic systems can be applied to both discrete
and continuous dynamical systems. That is, if we have a dynamical system (T, X ,Φ) with X a smooth
manifold and Φ : T × X → X the evolution function, then the system1 is called discrete if T = Z and
continuous if T = R. In the discrete case, one typically has a diffeomorphism ϕ : X → X and the full
evolution function is defined as Φ(n, x) =ϕn(x), i.e. iterated application of ϕ. In the continuous case,
the map Φ is called a flow. It is generated by a vector field v ∈X(X ) and in that case the map Φt : X → X
is again a diffeomorphism for any t ∈R.

The two cases can be related by fixing a t ∈R in the continuous case and then view ϕ=Φt as generating
a discrete system. The statements of definitions and results are (almost) identical if formulated in terms
of the evolution function Φ. The methods of proof share this similarity and can be translated into each
other. We shall adopt the continuous formulation in this work, and refer to the evolution parameter
t ∈ T =R as time. Even though our system is defined in terms of a vector field v , we call x ∈ X a fixed

1For simplicity of presentation we ignore the facts that Φ may have a smaller domain of definition, or that it is a semi-flow
or semi-cascade, only defined on T ≥ 0.

1



2 CHAPTER 1. INTRODUCTION

point of the system when Φt (x) = x for any t ∈R. This is equivalent to saying that v(x) = 0, i.e. that it is
a critical point of v ; we adhere to the former terminology to better preserve the analogy with discrete
systems.

Before we proceed to explaining normally hyperbolic invariant manifolds, it should be pointed out that
these are a generalization of hyperbolic fixed points. Many of the characteristic properties generalize as
well, so we first sketch the basic picture for hyperbolic fixed points. Let x be a fixed point of a vector field,
v(x) = 0; it is called hyperbolic if the derivative Dv(x) has no eigenvalues with zero real part. This means
that the eigenvalue spectrum splits into parts left and right of the imaginary axis, that is, the stable and
unstable eigenvalues, but no neutral ones. The corresponding stable and unstable eigenspaces E± are
both invariant under the linear flow of Dv(x) and these spaces are characterized by the fact that solution
curves on them converge exponentially fast towards the fixed point under forward or backward time
evolution respectively. It is a well-known result that there are corresponding stable and unstable (local)
manifolds, denoted W S

loc and W U
loc respectively, which are the nonlinear versions of these, see Figure 1.1.

This situation can be generalized to a normally hyperbolic invariant manifold by replacing the single
fixed point by a ‘fixed set of points’, that is, a manifold which is, as a whole, invariant.

W S
loc

W U
loc

E−

E+

Figure 1.1: A hyperbolic fixed point with (un)stable manifolds W S
loc,W U

loc.

Let us start with a somewhat informal explanation of the concept of a normally hyperbolic invariant
manifold, which we shall from now on often abbreviate as a NHIM, as is common in the literature. If
we have a dynamical system (T,Q,Φ) with phase space Q (which we shall often refer to as the ‘ambient
manifold’) and evolution map Φ, then a manifold M ⊂ Q is called invariant under the system if it is
mapped to itself under evolution. In the continuous case this means that Φt (M) = M for all times t ∈R,
that is, any point x ∈ M stays in M , so its complete orbit is contained in M .

An invariant manifold M is then called normally hyperbolic if in the normal directions, transverse to
M , the linearization of the flow Φt has a spectrum separate from the imaginary axis again. Although
the precise definition is a bit more technical than in the case of a hyperbolic fixed point, the geometric
idea is the same. The normal directions must separate into directions along which the linearized
flow exponentially converges towards M and directions along which it exponentially expands; no
neutral directions are allowed. Finally, the flow on M itself may expand or contract, but only at rates
that are dominated by the expansion and contraction in the normal directions. Figure 1.2 shows
part of a normally hyperbolic invariant manifold M that has only stable normal directions. Note
that the dynamics on M itself can be very complex; it can have fixed points or even be chaotic. The
only restriction is that the vertical contraction rate is stronger than horizontal ones (and similarly for
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M

Figure 1.2: A normally hyperbolic invariant manifold. The single
and double arrows indicate slow and fast flow respectively.

expansion), as is indicated by the double and single arrows and visible from the convergence of solution
curves to the rightmost fixed point on M .

1.1.1 Persistence and (un)stable manifolds

There are two important properties that generalize from hyperbolic fixed points to normally hyperbolic
invariant manifolds. These are persistence of the fixed point and the existence of stable and unstable
manifolds. The generalization of these properties is not a trivial statement nor easily proven in the
generalized case of NHIMs, however.

Let us first focus on persistence. In case of a hyperbolic fixed point, this is trivially stated and proven.
If the fixed point x is hyperbolic, then it will persist as a nearby fixed point under small perturbations
of the vector field v and stay hyperbolic. The proof is a direct application of the implicit function
theorem. If Dv(x) has no eigenvalues on the imaginary axis, then certainly it has no zero eigenvalue,
and therefore is a bijective linear map. So a slightly perturbed vector field ṽ will again have a fixed point
x̃ nearby x and the eigenvalues of Dṽ(x̃) will be close to those of Dv(x) if ṽ − v is small in C 1-norm.
Hence the eigenvalues are still separated by the imaginary axis. For a NHIM the situation is similar
but technically much more involved due to the fact that there is no control on the behavior of solution
curves in the invariant manifold. A normally hyperbolic manifold M does persist under C 1 small
perturbations and the perturbed manifold M̃ is again normally hyperbolic and close to M in a precise
way. The most important difference, however, is that M̃ generally has only limited smoothness, even if
M and the system were smooth or analytic2. This smoothness is dictated by the spectral gap condition,
which is roughly the ratio between the normal exponential expansion/contraction and the exponential
expansion/contraction tangential to M . This fact already indicates that the proof of persistence of a
NHIM cannot be a straightforward application of the implicit function theorem.

The stable and unstable manifolds generalize as well. That is, a normally hyperbolic invariant manifold
M has stable and unstable manifolds W S(M) and W U (M) such that solution curves on these converge
exponentially fast towards M in forward or backward time, respectively. Their intersection is precisely M .
But there is actually more structure: these manifolds—we consider W S(M) but everything is equivalent

2I do not know whether loss of smoothness is generic for NHIMs. See [Has94; HW99] for the case of Anosov systems.
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for W U (M)—are fibrations of families of stable and unstable fibers to each point m ∈ M ,

W S(M) = ⋃
m∈M

W S(m).

We should be a bit careful with this last statement, as points m ∈ M are generally not fixed points. These
fibers W S(m) are invariant in the sense that the flow commutes with the fiber projection πS :

∀ t ∈R, m ∈ M , x ∈W S(m) : πS ◦Φt (x) =Φt ◦πS(x).

In other words, each fiber is mapped into another single fiber under the flow, namely the fiber over the
flow-out of the base point m. This important fact means that if we use the fibration for local coordinates,
then in these coordinates the horizontal, base flow decouples from the vertical, fiber flow. This is
sometimes also called an isochronous fibration [Guc75] as all points in a fiber have the same long-term
behavior. Each single fiber is as smooth as the system, but the dependence on the base point m, and thus
the smoothness of the fibrations as a whole, is generally not better than continuous, see Fenichel [Fen74,
Sect. I.G]. We do not investigate these invariant fibrations in the present work, although the mentioned
results should hold for noncompact NHIMs as well.

1.1.2 The relation to center manifolds

Normally hyperbolic invariant manifolds bear a close resemblance to center manifolds. Their spec-
tral properties are roughly equivalent; they differ in the fact that NHIMs have an intrinsically global
definition, while center manifolds are defined in local terms.

A center manifold W C
loc(x) of a fixed point x is a local invariant manifold such that its tangent space at

the fixed point is the (generalized) eigenspace E0 of the eigenvalues with real part zero, that is,

TxW C
loc(x) = E0. (1.1)

We can extend the definition of center manifold a bit by including all eigenvalues λ with real part
bounded by |Re(λ)| ≤ ρ0. An associated generalized center manifold consists of solutions that converge
or diverge from x at an exponential rate bounded by ρ0. Curves in the strongly3 stable or unstable
manifold converge or diverge at exponential rates larger than ±ρ0, respectively. These conditions can
directly be compared to the description of NHIMs above, or Definition 1.8 (with ρ0 = ρM ).

If we take a look at Figure 1.2 again, then we see that both fixed points (indicated with a dot) on M
have (generalized) center manifolds; M itself is a center manifold for these, but for the rightmost fixed
point we can actually construct the center manifold from any two solution curves converging to that
fixed point from the left and right. For example, the union of the two curves drawn in the figure that
converge to it could be taken as alternative center manifold. This reflects the well-known fact that
center manifolds are generally not unique. This is the main difference with the case of NHIMs: center
manifolds are only defined in terms of growth rates of solution curves locally with respect to one fixed
point, while NHIMs are globally invariant objects, where the spectral splitting must hold everywhere
along the invariant manifold. This difference is effectively the reason that center manifolds are not
uniquely defined, while the perturbations of NHIMs are, see below. If we perturb the system in Figure 1.2
a bit, then the persistent NHIM must everywhere be close to the original invariant manifold M . This

3We remove the eigenvalues associated to E0 from E± so that E−, E0, E+ together disjointly span the total tangent space at
x.
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enforces uniqueness; in Figure 1.2 this is clearly visible: the alternative choice of center manifold to the
rightmost fixed point diverges far from M . See also the example in Section 1.2.1.

There is a subtle question of smoothness both for center manifolds and NHIMs, related to the spectral
gap condition (1.11). Center manifolds are arbitrarily smooth in a sufficiently small neighborhood of the
fixed point x, but they are generally not C∞, even though they satisfy an infinite spectral gap. See Van
Strien’s short note [Str79]. The reason is that the size of the neighborhood may depend on the degree of
differentiability C k . Persistent NHIMs generally have bounded smoothness due a finite spectral gap;
but even if they have an infinite spectral gap, the smoothness of a persistent NHIM is (generally) not C∞

for the same reasons. See Remark 1.12 and Example 1.3.

1.2 Examples

We present a few examples. The first detailed example serves to show explicitly that smoothness of a
persistent manifold depends crucially on the spectral gap condition. The next examples motivate the
usefulness of a noncompact version of the theory of normal hyperbolicity.

1.2.1 The spectral gap condition

An invariant manifold is called an r -NHIM if the flow contracts or expands at exponential rates along the
normal directions, and if these rates dominate any contraction or expansion along tangential directions
at least by a factor r . This separation between growth rates along directions tangential and normal to
the NHIM is encoded in equations (1.10) and (1.11).

Here we introduce a simple example where the growth rates can be identified with eigenvalues λ of
the linearization of the vector field at stationary points. Furthermore, we consider the simplified case
where only a stable normal direction is present. That is, we consider a flow that contracts in the normal
direction at an exponential rate of at least ρY < 0 and along the invariant manifold it contracts at most at
the rate ρX with the simplified spectral gap condition

ρY < r ρX with ρX ≤ 0, r ≥ 1. (1.2)

The spectral gap is fundamental to persistence of invariant manifolds: the compact invariant mani-
folds that are persistent under any small perturbation are precisely those that are normally hyper-
bolic4 [Mañ78]. Mañé only proved this inverse implication for 1-normal hyperbolicity, the question is
still open for r -normal hyperbolicity with r > 1. A further property of normally hyperbolic invariant
manifolds is that the differentiability of a slightly perturbed manifold depends not only on the smooth-
ness of the original manifold and the perturbed vector fields, but also on the spectral gap. The spectral
gap determines an upper bound 1 ≤ r <∞ on the smoothness of the perturbed system, as r has to
satisfy5 (1.11). This condition stems from the fact that when the flow has exponential growth behavior
eρ t , then higher order derivatives will generally have growth behavior ek ρ t and the interval inclusion[
k ρ,ρ

]⊂ (
ρY ,ρX

)
is required to show existence and uniqueness of the k-th derivatives via a contraction.

4The definition of normal hyperbolicity in [Mañ78] is a bit more general than the definition in this paper. That definition
only requires a growth ratio r ≥ 1 along solution curves in the invariant manifold, and not as a ratio of global growth rates
ρX ,ρY , see also Remark 1.10.

5The case r = ∞ would require ρX > 0; when ρX = 0, any finite order r can be obtained, but only for perturbations
sufficiently small depending on r .
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The optimal differentiability degree r can be extended to a real number by viewing α-Hölder continuity
as a fractional differentiability degree. That means that the perturbed manifold can be shown to be C k,α

when r = k +α satisfies the spectral gap condition and the system is C k,α to start with.

The following example shows that this result is sharp. We construct a very simple compact, normally
hyperbolic invariant manifold, and then show that an arbitrarily small perturbation yields a unique
perturbed C k,α invariant manifold, where r = k +α satisfies ρY = r ρX . This in fact precisely violates
the spectral gap condition, since that requires a strict inequality. The example could be adapted to
obtain a perturbed manifold with smoothness no better than C r ′

for some r ′ < r , cf. Example 1.3.
A more qualitative exposition of this example can also be found in [Fen72, p. 198–200] and [Hal69,
p. 239, 251].

Example 1.1 (Optimal C k,α smoothness of persistent manifolds).
Let the horizontal space X = S1 be the circle and the vertical space Y = R. Take two points x− = 0
and x+ = π in X and set the vector field v to zero at (x−,0), (x+,0). We turn these stationary points
into hyperbolic fixed points, with v linear in neighborhoods around them and Dv(x−,0),Dv(x+,0)
having eigenvalues λ− < 0 <λ+ along X , respectively, and one global eigenvalue λY <λ− in the vertical
direction along Y , i.e. ẏ = vy (x, y) =λY y , see Figure 1.3. We extend the horizontal component vx of the
vector field v to the whole space X ×Y in such a way that it is C∞, independent of y , and has no critical
points except for x−, x+. Hence, M = X × {0} is an invariant manifold for the flow Φt of v .

First, we check that M is normally hyperbolic. The long time behavior of any point m ∈ M is governed
by its approach of the stable fixed point (x−,0), except for m = (x+,0). For m = (x+,0) we have DΦt (m) =
eDv(m) t , hence

DΦt (m)|Tm X = eλ+ t ,

DΦt (m)|Tm Y = eλY t .

More generally, consider a point m ∈ M in the neighborhood of either (x±,0) where v is linear. Then
DΦt (m) is given by

DΦt (m) =
(

eλ± t 0
0 eλY t

)
for as long as Φt (m) stays in that neighborhood of (x±,0) where the vector field is linear. The transition
time between these two neighborhoods is finite as v does not have zeros and the transition map
preserves vertical lines {x}×Y . The latter fact is because vx is independent of y , that is, we have also

x− x+

Y

λ− χ λ+
X

λY λY

Figure 1.3: an example invariant manifold exhibiting C k,α smoothness under perturbation.
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found the invariant, foliated stable manifold of M . Gluing together these DΦt maps on the different
domains, we see that the resulting tangent flow splits again into independent horizontal and vertical
parts, which can be estimated by

∀t ≤ 0: ‖DΦt (m)|Tm X ‖ ≤CX eλ− t ,

∀t ≥ 0: ‖DΦt (m)|Tm Y ‖ ≤CY eλY t ,

where the constants CX , CY are determined by the flow Φt in the domain where v is nonlinear. For any
point m close to (x−,0) this estimate is sharp, hence we expect maximal smoothness r = λY /λ− for a
generic perturbation.

Next, we add a perturbation term εχ to the vector field v , so we have a perturbed vector field ṽ = v +εχ,
where χ ∈ C∞

0 is chosen with support on a small ball intersecting M away from the fixed points and
pointing upward. This will ‘lift’ the invariant manifold as indicated in Figure 1.3 for any ε> 0. Let M̃
denote this lifted manifold, that is, M̃ is the image of the two heteroclinic solution curves that run from
(x+,0) to (x−,0) together with these fixed points. The solution curve that runs to the left is lifted up from
the x-axis after entering the region suppχ.

We first investigate two claims: that M̃ is invariant and that it is the unique invariant manifold that is
close to M . The invariance is obvious; to the right of x+ nothing has changed, so there M̃ = M . To the
left of x+ we follow the original unstable manifold, get pushed up within the domain of support of χ and
after leaving that domain and entering the linear flow around (x−,0) we follow a standard curve ending
at (x−,0). This is a solution curve of ṽ ∈C∞, hence invariant and even smooth. Now assume there exists
another invariant manifold M ′ nearby and let (x ′, y ′) ∈ M ′ \ M̃ . The backward orbit of the point (x ′, y ′)
must diverge to |y |À 1. If x ′ = x−, then y ′ 6= 0 and this is clear. If x ′ 6= x−, then the backward orbit will
end up at a point (x, y) with x close to x+ and y 6= 0; since we are in the linear domain of (x+,0), this
orbit will then diverge (in reverse time) along the stable manifold towards |y | À 1. Hence, M ′ is not
close to M .

Next, we show that (for any ε> 0) the perturbed manifold M̃ is not more than C k,α with k +α=λY /λ−,
even though the original and perturbed systems are C∞-smooth. To the left of (x−,0), M̃ is given by the
graph of the zero function from X to Y (as the continuation from (x+,0) to the right along X = S1). To
the right of (x−,0), the solution curve is given by (x, y)(t ) = (x0 eλ− t , y0 eλY t ), hence y =C xλY /λ− where
C depends on x0, y0 only. So we can write M̃ as the graph of the function

h̃ : X → Y : x 7→
{

0 if x ≤ 0,

C xλY /λ− if x > 0.

This function is exactly C k,α for k+α= r in x = 0. Note that the loss of smoothness appears at a different
place than the perturbation of the vector field. The relevant fact is that the different solution curves
approaching the stable limit point have finite differentiability with respect to each other, and this
depends on the horizontal and vertical rates of attraction at (x−,0). ©

If we had assumed that ρY = ρX , that is, r = 1, but with a non-strict inequality ρY ≤ r ρX , then normal
hyperbolicity precisely fails and the invariant manifold indeed need not persist. By the arguments above
it can already be seen that the persistent manifold can lose differentiability: when r = 1, the graph of the
manifold will be given by

h̃(x) =
{

0 if x ≤ 0,

C x if x > 0,
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which is clearly non-differentiable at x = x− = 0. We can extend the example above to show that even
more serious problems can occur.

Example 1.2 (Non-persistence of non-NHIMs).
We consider Example 1.1 with ρY = ρX . If we perturb the system with a small circular vector field around
x− = (0,0), then Dv(0,0) will have two eigenvalues λY ± i ω with λY < 0 and ω ∈ R small. Thus, the
solution curves that should make up the invariant manifold around (0,0) will spiral in, which leads to
the picture in Figure 1.4. Note that the curves wind around the origin infinitely often. At the origin this
is not a manifold anymore, and cannot be described by a function h̃ : X → Y . ©

X

Y

Figure 1.4: breakdown of a non-NHIM under a circular perturbation.

The idea to perturb around the stable fixed point x− also leads to the following example.

Example 1.3 (Non-C∞ persistence for r =∞ NHIMs).
We consider again Example 1.1, but now with λ− = 0. Then we have ρX = 0 and spectral gap r =∞. If we
let λ− = ε depend on the perturbation parameter ε> 0, then this decreases the spectral gap condition6

to a finite number r = λY /λ−. Even though r → ∞ as the perturbation size ε goes to zero, we still
have a finite spectral gap for any fixed perturbation. We conclude that the corresponding perturbed
manifolds are not C∞, but have smoothness C r where r can be made arbitrarily large by decreasing the
perturbation size. ©

1.2.2 Motivation for noncompact NHIMs

Most of the literature on normal hyperbolicity and its applications treat compact NHIMs only. This
excludes possibly interesting applications. Settings where a noncompact, general geometric version
of normal hyperbolicity may be useful include chemical reaction dynamics [Uze+02] and problems in
classical and celestial mechanics [DLS06].

We describe three examples where noncompactness naturally comes into play. The first example, a
normally attracting cylinder, is set in Euclidean space. This example could be complicated a bit more by
adding normal expanding directions to get a fully normally hyperbolic system. Such situations show up
in Hamiltonian or reversible systems with invariant tori [Bro+09]. The second and third examples are
set in ambient manifolds with nontrivial topology, thus motivating the need for a theory of noncompact
NHIMs in such a geometric setting. The third example shows an application to classical mechanics and
actually motivated this work.

Let us first treat a simple example.

6The ratio r in the spectral gap is defined by a strict inequality, which we ignore here for simplicity of presentation.
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Example 1.4 (A normally attractive cylinder).
Let us consider the infinite cylinder y2 + z2 = 1 in R3. If we define a very simple dynamics by

(ẋ, ṙ, θ̇) = (0, r (1− r ), 1)

in cylindrical coordinates, then the cylinder is normally attractive and the motion on the cylinder
consists of only periodic orbits, see Figure 1.5.

The dynamics on the cylinder is completely neutral, while it attracts in the normal direction with rate
−1. Hence, there exists a unique persistent manifold diffeomorphic and close to the original cylinder.
For any k ≥ 1, the persistent manifold has C k smoothness if the perturbation is chosen sufficiently small.
The perturbed manifold must be uniformly close to the original cylinder; this rules out Example 3.9 of a
cylinder with exponentially shrinking radius.

The dynamics on the persistent manifold can be perturbed in arbitrary ways. It could slowly spiral
towards x-infinity, or develop attracting and repelling periodic orbits on the cylinder. If the cylinder
were higher dimensional, it could even become chaotic. ©

z

x

y

Figure 1.5: A normally attracting cylinder.

The previous example is set in Euclidean space, even though the invariant manifold has not completely
trivial topology. Let us next consider a case where the ambient space is a manifold of nontrivial
topology.

Example 1.5 (A pendulum with time-dependent perturbation).
Consider a classical pendulum described by its angle θ ∈ S1 and angular velocity ω. The unstable top
position θ =π is a hyperbolic fixed point, hence a special case of a NHIM.

The phase space TS1 is noncompact and nontrivial. Without perturbations we could restrict ourselves to
a compact energy surface; if we add a general time-dependent perturbation, however, then energy is not
preserved anymore and the full phase space must be considered. We should include the noncompact
time interval R as well, leading to the full phase space TS1 ×R. Then the unperturbed unstable top
position corresponds to the one-dimensional NHIM

M = {
(θ,ω, t ) ∈ TS1 ×R ∣∣ θ =π, ω= 0

}
. (1.3)

If the perturbation is globally sufficiently small in C 1 norm, then M uniquely persists into a manifold M̃
nearby. This means that under any small perturbations there exists a unique orbit of the pendulum that
balances closely around the unstable top position for all time t ∈R. Note that this orbit stays uniformly
close to the top position and that the perturbation need not depend (quasi-)periodically on time. ©
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Remark 1.6. The nontrivial topology of S1 can easily be undone by modeling the system on its universal
cover R. The example can be changed to a spherical pendulum modeled on S2; this indicates more
clearly the usefulness of having the theory available in spaces with nontrivial topology, although in this
case we still only need to study the problem in a small neighborhood of the top position. It was pointed
out to me by Robert MacKay that TS2 is still a trivializable tangent bundle, and that more complex,
non-trivializable examples including higher dimensional spheres can be constructed in the setting of
chemical reaction dynamics. ♦

The last example actually motivated this work.

Example 1.7 (Nonholonomic systems as singular perturbation limit).
Let a classical mechanical system be given by a smooth Riemannian manifold (Q, g ) as configuration
space and a Lagrangian L : TQ →R. The vector field v on TQ is determined by the Lagrange equations
of motion, given in local coordinates by

[
L
]i = d

dt

∂L

∂ẋi
− ∂L

∂xi
= 0. (1.4)

A nonholonomic constraint can be placed on such a system by specifying a distribution7 D⊂ TQ and
adding reaction forces to [L] according to the Lagrange–d’Alembert principle, that is, we require that a
solution curve γ satisfies [

L
]
(γ)(t ) ∈D0 and γ̇(t ) ∈D for all t ∈R (1.5)

where D0 ⊂ T∗Q denotes the annihilator of D. This means that we restrict the velocities—but not the
positions—of the system and adapt the vector field such that it preserves D. Such constraints are called
‘nonholonomic’ if the distribution D is not integrable. This means that some small positional changes
can only be obtained through long orbits due to the constraints. The prototypical example is that
parallel parking a car a small distance sideways requires repeated turning and moving forward and
backward.

As a concrete example of a nonholonomic system, let us consider a ball rolling on a flat surface. The
possible positions of the ball are specified by Q = SO(3)×R2, i.e. orientation and position in the plane.
If we enforce the constraint that the ball can only roll and not slip, then its linear velocity is determined
by its angular velocity ω ∈ so(3), thus we have

so(3)×SO(3)×R2 ∼=D⊂ T
(
SO(3)×R2).

The addition of the nonholonomic reaction forces specified by the Lagrange–d’Alembert principle can
be argued for on physical grounds, and some experimental verification has been done by Lewis and
Murray [LM95] to check its correctness against the alternative vakonomic principle. Still, it would be
nice to rigorously derive these forces from fundamental principles; this would complement [RU57;
Tak80; KN90] which showed this for holonomic constraints. The nonholonomically constrained system
can be obtained from the unconstrained system by adding friction forces, see [Kar81; Bre81; Koz92].
Heuristically, one could say that if a rolling ball feels a strong contact friction force, then if this force is
taken to infinity, it suppresses all slipping. This can be viewed as a singular perturbation limit, where D
precisely is the invariant manifold, and it is normally attracting due to the dissipative friction force.

7Here, a distribution is meant in the sense of differential geometry as a subbundle of the tangent bundle, not a generalized
function (nor a probability distribution).
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The cited works prove this result, but only asymptotically on finite time intervals. The extension of the
theory of NHIMs to noncompact manifolds as developed in this work can be applied here. It allows
one to improve upon this result and make it exact on infinite time intervals and general noncompact
configuration spaces Q, as long as these satisfy the ‘bounded geometry’ condition. One could think, for
example, of a gently sloping surface and a ball that is not perfectly round, or even a time-dependent
perturbation, as long as it is uniformly bounded in time. ©

1.3 Historical overview

As already mentioned, the theory of normally hyperbolic invariant manifolds is a generalization of the
theory of hyperbolic fixed points. The study of these dates back to the beginning of the 20th century,
or even the end of the 19th century. From 1892 onwards, Poincaré published his works “Les méthodes
nouvelles de la mécanique céleste” [Poi92], in which he founded the theory of dynamical systems and
famously studied the three-body problem. This triggered further research in nonlinear dynamical
systems and persistence questions. Another important work published in the same year is “The
general problem of the stability of motion” by Lyapunov; the original is in Russian, but translations in
French [Lya07] and English [Lya92] are available. In this work, he introduced the concept of characteristic
numbers, nowadays called ‘Lyapunov exponents’, to study ‘conditional stability’ of nonlinear differential
equations at a fixed point. Conditional stability corresponds to the existence of stable (and unstable)
linearized directions and Lyapunov proves the existence of a stable manifold by means of a series
expansion under the assumption that the system is analytic.

In the beginning of the 20th century, the problem of stable manifolds was studied, without assuming
analyticity, by Hadamard [Had01] and Cotton [Cot11]. Both Frenchmen applied different methods to
obtain the stable and unstable manifolds of a hyperbolic fixed point. Later, the German mathematician
Perron extended the ideas of Cotton to allow for generic complex eigenvalues, possibly of higher
multiplicity, as long as the real parts of the eigenvalues are separated by zero (or even a number r 6= 0),
see [Per29; Per30]. Hadamard’s method is now named after him, and also known as the ‘graph transform’.
The other method was first formulated by Cotton, although the idea of exponential growth of solution
curves can be traced to Lyapunov. This method is commonly referred to as the Perron or Lyapunov–
Perron method in the literature. This seems to pay too little credit to Cotton, even though Perron
himself [Per29] does attribute the method to Cotton8.

From around 1960, renewed activity in the area of hyperbolic dynamics led to the generalization of the
theory of (un)stable manifolds for hyperbolic fixed points to persistence and (un)stable fibrations for
normally hyperbolic invariant manifolds. Many authors have contributed to this subject, culminating
in the seventies in the works by Fenichel [Fen72] and Hirsch, Pugh, and Shub [HPS77]. These two
works formulate the theory slightly differently, but in broad generality and can be viewed as the basic
references nowadays; references to earlier works can be found in both. Both Fenichel and Hirsch, Pugh,
and Shub use Hadamard’s graph transform as their fundamental tool. In these works, compactness
of the invariant manifold is a basic assumption. Noncompact, immersed manifolds are considered
in [HPS77, Sect. 6], albeit under the assumption that the immersion image is compact again.

The theory of normal hyperbolicity has seen some interesting developments since these foundational
works, and the applications have slowly started to flourish, see [Wig94] for a list of subjects. A major
development was the generalization to semi-flows in Banach spaces. This situation can arise when one

8These facts were pointed out to me by Duistermaat.
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wants to study partial differential equations as ordinary differential equations on appropriate function
spaces. This technique has been applied to PDEs such as the Navier–Stokes or reaction-diffusion
equations.

In his book on parabolic PDEs, Henry extended the Perron method to apply to semi-flows with a NHIM
given as the horizontal submanifold9 X × {0} in a product X ×Y of Banach spaces [Hen81, Chap. 9].
Henry’s idea is to linearize only the normal directions, but keep the horizontal flow along M in its
general, nonlinear form, while at the same time splitting the Perron contraction map into a two-stage
contraction map on horizontal and vertical curves separately. Henry obtains C 1,α smoothness only. In
the series of papers [BLZ98; BLZ99; BLZ08], Bates, Lu, and Zeng study more general NHIMs of semi-
flows in Banach spaces. They employ Hadamard’s graph transform and allow so-called ‘overflowing
invariant manifolds’, as in [Fen72]. They also allow the NHIM to be noncompact and an immersed
instead of an embedded submanifold. In [BLZ99] the unperturbed NHIM is assumed to be C 2 to obtain
C 1 persistence results, for the technical reason of constructing C 1 normal bundle coordinates. In their
later paper [BLZ08], this technicality is overcome10, and existence of a NHIM is even proven when
sufficiently close, approximately normally hyperbolic invariant manifolds exist; the persistence result is
then obtained for compact NHIMs only, to circumvent the C 2 assumption.

Vanderbauwhede and Van Gils [VG87; Van89] introduced the technique of considering a scale (family)
of Banach spaces of curves with exponential growth, and using the fiber contraction theorem (see
Appendix D), proved smoothness of center manifolds with the Perron method. Although not the same,
center manifolds have many properties in common with NHIMs and Sakamoto [Sak90] has built upon
the works of Henry and Vanderbauwhede and Van Gils to prove persistence and C k−1 smoothness for
singularly perturbed systems in a finite-dimensional Rm ×Rn product space setting. The loss of one
degree of smoothness is again due to the construction of normal bundle coordinates, although this fact
is obscured by the explicit Rm ×Rn setting.

Singularly perturbed, or, slow-fast systems are another important class of applications. These describe
systems where the dynamics is governed by multiple, separate time scales, or when a system can be
viewed as an approximation of an idealized, restricted system. Singularly perturbed systems can
be studied using the theory of normal hyperbolicity by turning them into a regular perturbation
problem via a rescaling of time, see foundational work by Fenichel [Fen79] or the more introductory
expositions [Jon95; Kap99; Ver05].

1.4 Comparison of methods

There are two well-known methods for proving the existence and smoothness of invariant manifolds in
hyperbolic-type dynamical systems. The Hadamard graph transform and the variation of constants
method, also known as the (Lyapunov–)Perron method. Variations of both have been applied in many
situations with some form of hyperbolic dynamics. This ranges from the relatively simple problem of
finding the stable and unstable manifolds of a hyperbolic fixed point, to center manifolds, partially
hyperbolic systems, and normally hyperbolic systems. The quote of Anosov [Ano69, p. 23] that “every
five years or so, if not more often, someone ‘discovers’ the theorem of Hadamard and Perron, proving it

9Henry actually has reversed notation where the ‘vertical’ manifold Y × {0} is the NHIM.
10Their Hypothesis (H2) that a certain approximate splitting like (1.9) “does not twist too much”, can be obtained from

uniform Lipschitz continuity of the tangent spaces of the invariant manifold. I am not sure if this is a significantly weaker
hypothesis. See also the discussion in Remark 3.13.
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either by Hadamard’s method of proof or by Perron’s” is nowadays probably familiar to many researchers
in these areas; it illustrates the pervasiveness of these methods.

In this section, I describe the ideas that are common to both methods, as well as their differences. I
hope to elucidate the merits and weak points of both methods, especially when applied to normally
hyperbolic systems. Basically they seem to be able to produce the same conclusions, but each method
takes a different viewpoint to the problem.

Let us first identify some basic common ideas. As a sample problem, we consider finding the invariant
unstable manifold W U of a hyperbolic fixed point, positioned at the origin of Rn . The system is defined
by either a diffeomorphism Φ in the discrete case, or a flow Φt in the continuous case. Both methods
use the splitting of the tangent space into stable and unstable directions:

T0R
n ∼=Rn =U ⊕S.

Let (x+, x−) denote coordinates in U ⊕S according to projections π+, π− from Rn onto the unstable and
stable directions U and S, respectively. We shall use the notation Φ± =π± ◦Φ.

1.4.1 Hadamard’s graph transform

The graph transform is due to Hadamard. His paper [Had01] (in French, 4 pages) can be used as a
concise and basic introduction to the graph transform, applied to the stable and unstable manifolds of
a hyperbolic fixed point. He does not prove smoothness or even continuity of these invariant manifolds,
although continuity could easily be concluded by introducing the Banach space of bounded continuous
functions with supremum norm.

The basic idea of the graph transform is to view the unstable manifold W U as the graph of a function
g : U → S. The graph, as a set, is invariant under Φ (or e.g. Φ1 in the continuous case). The diffeomor-
phism Φ can also be interpreted as a map acting on functions g through its action on their graphs. This
induces a mapping

T : g 7→ g̃ implicitly defined by g̃
(
Φ+(x, g (x))

)=Φ−(x, g (x)). (1.6)

Thus, by definition, any point (x, g (x)) on the graph of g gets mapped to a point (x ′, g̃ (x ′)) on Graph(g̃ ).
The map T turns out to be well-defined and a contraction on functions U → S that are sufficiently
small in Lipschitz norm. The graph of the unique fixed point g? of T must correspond to the unstable
manifold, that is, W U = Graph(g?).

By considering the invariant sets, this method focuses on the geometry of the problem. The method
uses a diffeomorphism map Φ; the continuous case can be studied by considering the flow map Φt for a
fixed time t . The diffeomorphism can easily be studied locally in charts on a manifold. Therefore this
method lends itself well to the generalized setting of normally hyperbolic invariant manifolds, where
the invariant manifold is intrinsically a global object. Even if this global object is nontrivial, it can still
be studied in local charts.

1.4.2 Perron’s variation of constants method

This method is commonly referred to as the Perron or Lyapunov–Perron method. Although in the
literature this is attributed to Perron [Per29], he in turn cites Cotton [Cot11] for the main idea.
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This method focuses on the behavior of solution curves. The solutions on the unstable manifold are
precisely characterized by the fact that they stay bounded under backward evolution. In the following,
we explain the Perron method for the continuous case11. We adopt the notation from the graph
transform setting. A contraction operator T is constructed via a variation of constants integral. The
nonlinear part of the vector field is viewed as a perturbation of the linear part. The integral equation is
split into the components along the stable and unstable directions. Then the integration of the unstable
component is switched from the interval [0, t ] to [−∞, t ], and only bounded functions are considered.
Writing the vector field v(x) = Dv(0) ·x + f (x) in linearized form with nonlinearity f , this leads to the
following contraction operator on curves x = (x+, x−) ∈C 0([−∞,0];Rn):

T :
(
x+(t ), x−(t )

) 7→ (
x+

0 −
∫ 0

t
DΦt−τ

+ (0) f+
(
x−(τ), x+(τ)

)
dτ ,∫ t

−∞
DΦt−τ

− (0) f−
(
x−(τ), x+(τ)

)
dτ

)
.

(1.7)

This mapping T is well-defined and a contraction on curves x ∈C 0([−∞,0];Rn) whose stable component
x− is bounded and sufficiently small. Note that T does not depend on the stable component x−

0 of the
initial conditions anymore. The fixed point of T is a solution curve on W U with x+

0 given as a parameter.
The unstable manifold is described, finally, by evaluating the stable component at zero, leading to a
graph

g : U → S : x+
0 7→ x−(0).

First of all, it must be noted that this method requires f to be small in C 1-norm. We can make f small by
restricting to a sufficiently small neighborhood of the origin and cutting off f outside of it. This cut-off
does not influence the results: due to the boundedness condition, curves x stay in the neighborhood.
The method can be generalized to a separation of stable and unstable spectra (i.e. a dichotomy) away
from the imaginary axis12, and for example be applied to show existence of center manifolds. In that
case, uniqueness is lost as solutions will generally run out of small neighborhoods. This makes the
Perron method not directly applicable to normally hyperbolic invariant manifolds. The center direction
corresponds to the invariant manifold, but solution curves are global objects that cannot be treated
locally.

The Perron method can be extended to overcome this problem. Henry [Hen81, Chap. 9] linearizes the
vector field only in the normal directions of the invariant manifold. Henry uses a two-step contraction
scheme, but this can be reduced to a single contraction T = T− ◦T+ that is a composition of two maps.
The maps T± are essentially the components of (1.7). Still, the results obtained are not quite as general as
those obtained with the graph transform. For the graph transform, the condition of normal hyperbolicity
can be formulated in terms of the ratio of the normal and tangential growth rates of the flow along orbits,
while for the Perron method it must be formulated in terms of the ratio of global growth rates. This less
general assumption is required because the contraction operator (1.7) is studied on spaces of solution
curves with a fixed exponential growth behavior, see Definition 1.17.

11Contrary to the graph transform (which is only intrinsically defined for mappings), the Perron method can be formulated
both for flows and discrete mappings. For the discrete case, the integral must be replaced by a sum, the mapping Φ must be
split into a linear and nonlinear part, and the linearized flow must be replaced by iterates of the linearized mapping. See for
example [APS02; PS04].

12This is for the continuous case. The imaginary axis of the spectrum of a vector field corresponds (via the exponential map)
to the unit circle for the spectrum of a diffeomorphism in the discrete case.
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Explicit time dependence can be added to the Perron method with only trivial modifications. This
allows one to study hyperbolic fixed points in non-autonomous systems13. An application is the study
of invariant fibrations of, for example, normally hyperbolic invariant manifolds. These have fibered
stable and unstable manifolds. Points in a single fiber are characterized by the unique orbit on the
normally hyperbolic invariant manifold they are exponentially attracted to under forward or backward
evolution, respectively. Finding these fibers is turned into a non-autonomous hyperbolic fixed point
problem by following a point on the invariant manifold.

1.4.3 Smoothness

In the truly hyperbolic case—when the stable and unstable spectra are separated by a neighborhood
of the imaginary axis—the Perron method allows for a direct proof of smoothness of the manifolds
W U and W S , see [Irw70; Irw72] where this is formulated for discrete systems. One first verifies that
the contraction operator T is as smooth as the system, still acting on continuous curves x. Then,
by an implicit function theorem argument, the fixed point depends smoothly on the (partial) initial
value parameter x+

0 . To the best of my knowledge, there is no similarly simple approach for the graph
transform. The contraction map acts directly on graphs g , so to obtain smoothness, one must consider
the maps g ∈C k (U ;S). A direct estimate of contractivity in C k -norm requires higher than k-th order
Lipschitz estimates on the system.

When the spectra are not separated by the imaginary axis—this occurs for example in normally hyper-
bolic systems—things become more complicated. The spectral gap condition defines an intrinsic upper
bound for the smoothness that one can generically expect for a system, as was seen in Example 1.1.
Both methods apply induction over the smoothness degree in their proof. Formal derivatives of the
contraction map T are constructed. These are again contractions, but now on higher derivatives of
the fixed point mapping, while fixing the derivatives below. Finally, the fiber contraction theorem (see
Appendix D) can be used to conclude that these higher order derivatives converge to a fixed point,
jointly with all lower orders.

Explicit calculation of higher derivatives of T is very tedious; one should focus on their form as dictated
by Proposition C.3. For the graph transform, the relevant terms that one obtains from (1.6) are, ignoring
arguments,

Dk g̃ · (D1Φ++D2Φ+ Dg
)k + . . . = D2Φ− ·Dk g + . . .

This leads to a contraction when ‖D2Φ−‖·‖D1Φ
−1+ ‖k < 1. The limit on k precisely corresponds to the

spectral gap condition, at least when we replace Φ by a sufficiently high iterate ΦN of itself, or in the
continuous case, if we take the flow map Φt at a sufficiently large time t .

For the Perron method, the essential form of the derivatives of T is

Dk T (x)
(
δx1, . . . ,δxk

)
(t ) =

∫
DΦt−τ(0) ·Dk f (x(τ))

(
δx1(τ), . . . ,δxk (τ)

)
dτ. (1.8)

The solution curve x as well as its variations δxi are of growth order eρ t , so the variation of f in the
integrand is of growth order ek ρ t , even if Dk f itself is bounded. This means that k-th order variations
must be considered in spaces of growth order ek ρ t and Dk T is only contractive on such spaces if both ρ
and k ρ are contained in the spectral gap.

13The term ‘fixed point’ in the context of a non-autonomous system is not definable in a coordinate-free way: any orbit of
the system can be made into a fixed point under a suitable time-dependent coordinate transformation. However, there may
be a preferred “time-independent” coordinate system. Moreover, the hyperbolicity of an orbit with respect an intrinsic metric
is independent of a choice of coordinates.
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1.5 Bounded geometry

The main results of this work are formulated in a geometric context on differentiable manifolds. Already
in [Fen72; HPS77] the results are formulated in such a context. This allows for more general situations
than choosing Rn as ambient space. In the compact case, it does not require a change in the basic proofs
(as can be seen from the approach taken in [Fen72]), but it does bring in some additional formalism.
On the other hand, pre-existing work on noncompact NHIMs [Hen81; Sak90; BLZ08; BLZ99] explicitly
assumes that the ambient space is Euclidean or Banach.

It turns out that if one switches to a noncompact setting in manifolds, then some fundamental new
ingredients must be added. Already in Euclidean space one must assume uniformity of the vector fields
as a replacement for compactness. Similar additional uniformity assumptions are required for the
ambient space — these do not manifest themselves in Euclidean space. First, a choice of Riemannian
metric (or possibly a weaker form: a Finsler structure) is required since not all metrics are equivalent
anymore on a noncompact manifold, see Example 3.6. As an extension, Example 3.7 shows that
one cannot reduce the noncompact to a compact case by compactification. Secondly, the ambient
manifold and functions on it should satisfy uniformity criteria that can be captured in terms of ‘bounded
geometry’14. For full details see Section 3.3 on compactness and uniformity and Chapter 2 on bounded
geometry. Let us just give a quick overview here.

A Riemannian manifold has bounded geometry, loosely speaking, if it is globally, uniformly well-
behaved. More precisely, its curvature must be bounded and the injectivity radius must be bounded
away from zero, see Definition 2.1. Then there exists a preferred set of so-called normal coordinate
charts for which coordinate transition maps are uniformly continuous and bounded, smooth functions.
That is, in k-th order bounded geometry we have a C k uniform atlas. As a consequence, uniformly
continuous and bounded submanifolds, vector fields, and other objects can be defined and manipulated
in a natural way in terms of these coordinates. Note that Rn and compact manifolds have bounded
geometry, see Example 2.3. Together with corollaries 3.4 and 3.5 of the main theorem, this shows that
bounded geometry provides a natural generalization to the known settings of compact and Euclidean
spaces.

We use bounded geometry to obtain boundedness estimates on holonomy, see Section 2.2. This is a
fundamental ingredient in our proof of smoothness of the perturbed manifold. Finally, we present
more technical results in bounded geometry: a uniform tubular neighborhood, uniform smoothing
of submanifolds, and a trivializing embedding of the normal bundle. We use these to reduce the full
problem of persistence of a normally hyperbolic submanifold M in an ambient manifold Q to the
trivialized situation X ×Y , where M is represented by the graph of a small function h : X → Y and Y
is a vector space. Uniformity permeates all these constructions in order to obtain uniform estimates
required for the persistence proof in the trivialized setting.

1.6 Problem statement and results

The main problem in this work is the persistence of normally hyperbolic invariant manifolds under
small perturbations of the dynamical system. That is, given a flow Φt defined by some vector field v and

14We do not claim that bounded geometry is a necessary condition to generalize the theory of normal hyperbolicity to
noncompact ambient spaces, only that it is sufficient. Section 3.3 does contain some examples, though, that indicate that
some form of bounded geometry is necessary.
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a normally hyperbolic invariant submanifold M , we want to show that for any vector field ṽ sufficiently
close to v , there exists a unique manifold M̃ close to M that is invariant under the flow of ṽ ; moreover
we would like to show that M̃ is normally hyperbolic again. To make this statement precise, we need
to define a lot of things: first of all, we need to rigorously define normal hyperbolicity. Secondly, the
statements about vector fields and manifolds being ‘close’ need to be formalized and finally, we need to
specify the ambient space Q on which the system is defined.

We start with a Riemannian manifold (Q, g ) as ambient space and a submanifold M . For technical
reasons this manifold is assumed to be complete and of bounded geometry (or at least in a δ > 0
neighborhood of M , since the whole analysis can be restricted to such a neighborhood). Basically, these
conditions impose uniformity of the space, and fit in the principle of replacing compactness by uniform
estimates, see Section 3.3 and Chapter 2 for more details. Note that Q =Rn with the standard Euclidean
metric is an easy (and typical) special case.

Let v ∈ X(Q) be a vector field on Q with v ∈ C k,α
b,u , that is, v up to its k-th derivative is uniformly

continuous and bounded, and α-Hölder continuous if α 6= 0. On Rn these statements make immediate
sense; on general manifolds Q, results from Chapter 2 are required, in particular Definition 2.9, to
make sense of uniform boundedness and continuity by means of normal coordinates. Let ṽ be another
such vector field. The closeness of v and ṽ will be measured using supremum norms. The C 1-norm
is required to be small for the persistence result. Thus, even though we consider the space of C k,α

bounded vector fields, we endow this space with a C 1 topology. See Section 1.7 for some more remarks
on this topology and a comparison with standard topologies on noncompact function spaces. If we
assume that ṽ − v is small in C k,α-norm as well, then M̃ will be C k,α-close15 to M . These C 1 and C k

norm requirements and results are direct analogues of those in the implicit function theorem.

Finally, we define normal hyperbolicity of a submanifold M with respect to a continuous dynamical
system (R, Q,Φ). The flow Φt should have a domain of definition containing at least a neighborhood
of the invariant manifold M . This definition is easily adapted to the discrete case of a diffeomorphism
Φ : Q →Q; simply replace t ∈R by t ∈Z as iterated powers of Φ.

Definition 1.8 (Normally hyperbolic invariant manifold).
Let (Q, g ) be a smooth Riemannian manifold,Φt ∈C r≥1 a flow on Q, and let M ∈C r≥1 be a submanifold of
Q. Then M is called a normally hyperbolic invariant manifold of the system (Q,Φt ) if all of the following
conditions hold true:

i. M is invariant, i.e. ∀ t ∈R : Φt (M) = M;

ii. there exists a continuous splitting
TMQ = TM ⊕E+⊕E− (1.9)

of the tangent bundle TQ over M with globally bounded, continuous projections πM , π+, π− and this
splitting is invariant under the tangent flow DΦt = DΦt

M ⊕DΦt+⊕DΦt−;

iii. there exist real numbers ρ− < −ρM ≤ 0 ≤ ρM < ρ+ and CM ,C+,C− > 0 such that the following
exponential growth conditions hold on the various subbundles:

∀ t ∈R, (m, x) ∈ TM : ‖DΦt
M (m) x‖ ≤CM eρM |t | ‖x‖,

∀ t ≤ 0, (m, x) ∈ E+ : ‖DΦt
+(m) x‖ ≤C+ eρ+ t ‖x‖,

∀ t ≥ 0, (m, x) ∈ E− : ‖DΦt
−(m) x‖ ≤C− eρ− t ‖x‖.

(1.10)

15We actually only obtain C k closeness for integer k ≤ r −1 where r is the ratio in the spectral gap condition 1.11. This is
probably an artifact of the techniques we used, while C k,α closeness with k +α= r should be obtainable.
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These exponential estimates imply that the tangent flow DΦt must contract at a rate of at least ρ− along
the stable complementary bundle E−, expand16 as eρ+ t along the unstable bundle E+, and may not
expand or contract at a rate faster than ±ρM , respectively, tangent along TM .

Remark 1.9. We added the condition that the projections πM , π+, π− are globally bounded. This is a
natural extension to the noncompact case, and is automatically satisfied in case M is compact.

Remark 1.10. This definition of normal hyperbolicity is not as general as could be. Fenichel [Fen72,
p. 200–204] defines normal hyperbolicity in terms of ‘generalized Lyapunov type numbers’. It follows
from his uniformity lemma that these are essentially exponentiated versions of our Lyapunov exponents
ρ. For example, his ν is equivalent to our e−ρ+ . But Fenichel defines σ in terms of the ratio ρM /ρ+ along
orbits in M . His definition allows the expansion rate along TM to be large, for example, as long as the
expansion rate along E+ is large enough to keep the ratio σ(m) bounded, along the orbit through m.
The definitions in [HPS77; Mañ78; BLZ08] are equivalent in the compact context to the one in [Fen72].
Mañé’s work shows that this definition is as general as possible, see below. ♦

When M is compact, normal hyperbolicity is a sufficient condition for the existence of a persistent
manifold M̃ for a system generated by ṽ if ‖ṽ − v‖1 is sufficiently small. Conversely, Mañé [Mañ78] has
proved that normal hyperbolicity (in the sense of e.g. Fenichel’s definition) is also necessary: if a compact
invariant manifold M is persistent under any C 1 small perturbation, then M is normally hyperbolic (see
also Example 1.2 and the clear exposition in the introduction of [Fen72]). Definition 1.8, however, only
guarantees C 1 smoothness for the perturbed manifold M̃ . To obtain higher order smoothness, a more
stringent condition of r -normal hyperbolicity must be satisfied.

Definition 1.11 (r -normally hyperbolic invariant manifold).
A manifold M is called r -normally hyperbolic with r ≥ 1 a real number, if it satisfies M ∈ C r and the
conditions in Definition 1.8, but with the stronger inequalities

ρ− <−r ρM ≤ 0 ≤ r ρM < ρ+. (1.11)

This means that the normal expansion and contraction must not just dominate the tangential ones, but
do so by a factor r . For r = 1 we recover the original definition, while the generalized inequality (1.11) is
called the spectral gap condition. If M is r -normally hyperbolic and v and the perturbation ṽ are C r

as well, then the persistent manifold M̃ is C r smooth again. The example in Section 1.2.1 shows that
this spectral gap condition is sharp: even when everything is C∞, the perturbed manifold M̃ in that
example is only C r when no more than r -normal hyperbolicity holds. Note that r can be interpreted
as a ‘fractional differentiability degree’ when writing r = k +α with integer k ≥ 1 the normal degree of
differentiability and 0 ≤α≤ 1 an additional Hölder continuity exponent.

Remark 1.12. We explicitly exclude the case r =∞ from Definition 1.11, even though the spectral gap
condition (1.11) could hold for r = ∞, if ρM = 0. The reason is that one can generally not expect
to obtain a persistent manifold M̃ ∈ C∞ in this case. Even though for any order r < ∞ there exist
persistent manifolds M̃ ∈ C r for sufficiently small perturbations, the maximum perturbation size
generally depends on r and may shrink to zero when r →∞. See Example 1.3 and the example in [Str79]
for the closely related case of center manifolds.

16Note that expansion along E+ could also be formulated as ‖DΦt (m) x‖ ≥ C+ eρ+ t ‖x‖ for t ≥ 0 and (m, x) ∈ E+. This is
equivalent to the condition as stated, which says that there is contraction for t ≤ 0, that is, in backward time. This latter
formulation is preferable because it is the form required in estimates.
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On the other hand, it is shown in [HPS77] that there is forced smoothness. If M ∈C 1 is an r -NHIM and
the system is C r , then M must be C r . This also holds in our noncompact setting, see Remark 3.3, x for a
sketch of its proof. ♦

With these preliminary definitions in place, we are now ready state our main theorem; it is restated in
Chapter 3. We should point out that M is not required to be an embedded submanifold; immersions are
allowed as well, see Section 1.6.2. For the details of the smoothness notation C k,α

b,u on manifolds we refer
to definitions 2.9 and 2.21.

Theorem 3.1 (Persistence of noncompact NHIMs in bounded geometry).
Let k ≥ 2, α ∈ [0,1] and r = k +α. Let (Q, g ) be a smooth Riemannian manifold of bounded geometry and

v ∈C k,α
b,u a vector field on Q. Let M ∈C k,α

b,u be a connected, complete submanifold of Q that is r -normally
hyperbolic for the flow defined by v, with empty unstable bundle, i.e. rank(E+) = 0.

Then for each sufficiently small η > 0 there exists a δ > 0 such that for any vector field ṽ ∈ C k,α
b,u with

‖ṽ − v‖1 < δ, there is a unique submanifold M̃ in the η-neighborhood of M, such that M̃ is diffeomorphic
to M and invariant under the flow defined by ṽ. Moreover, M̃ is C k,α

b,u and the distance between M̃ and M

can be made arbitrarily small in C k−1-norm by choosing ‖ṽ − v‖k−1 sufficiently small.

This result generalizes the well-known results in [Fen72; HPS77] to the case of noncompact submanifolds
of Riemannian manifolds. Again, our definition of normal hyperbolicity is slightly less general than the
definitions used in these works. We also assumed that only the stable bundle E− is present, see also
Section 4.4; note that we thus only have the spectral gap condition ρ− <−r ρM with ρM ≥ 0. See also the
restatement of this theorem on page 62 and the list of remarks 3.3 for more details.

We borrow the idea to generalize the Perron method to NHIMs from Henry [Hen81], and use the
techniques of Vanderbauwhede and Van Gils [VG87] (see [Van89] for a clear presentation) for proving
higher order smoothness. This is similar, but developed independently from Sakamoto’s work [Sak90] in
which he used the same ideas to study singular perturbation problems. We improve these results in
a couple of ways. First of all, we simplify the basics of the proof by reducing the two-step contraction
argument to a single contraction mapping, still written as a composition of two separate maps acting on
horizontal curves in M and vertical curves in the normal bundle fiber, respectively. More importantly,
we remove the restriction of a trivial product structure X ×Y . Thus, we neither require M to have a
global chart in a Banach space X , so M need not be topologically trivial, nor do we require a global
product, so the normal bundle of M need not be trivial either. On the other hand, the results by Bates,
Lu, and Zeng also allow M to be a general submanifold, but still assume the ambient space to be a
Banach space. Our results are for finite dimensional, but not necessarily linear, Riemannian ambient
spaces. In their paper [BLZ08], they only require an approximate NHIM for finding a persistent invariant
manifold. We use this idea as well (see the setup of h small in the formulation of Theorem 3.2), but
we do not expand this idea any further. Finally, this work was initiated from the (unfortunately never
published) preprint by Duistermaat on stable manifolds [Dui76].

It seems to be a well-known belief by many experts that the theory of normal hyperbolicity can be
extended to a general noncompact setting [DLS06, p. 165]. The idea is to replace compactness by
uniform estimates. An important conclusion to be drawn from the present work is that indeed this
principle holds, but probably in a more strict way than one would naively realize. Uniform estimates
are not only required for the vector field defining the system, but for the underlying ambient space as
well, in terms of bounded geometry. This becomes clear only when one leaves the context of Euclidean
ambient spaces, which trivially have bounded geometry. On a Riemannian manifold, already the very
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definition of uniform continuity of a vector field v and its derivatives requires some aspects of bounded
geometry. It should be noted though, that we do not prove that bounded geometry is a strictly necessary
condition for persistence of NHIMs; nonetheless, the results do suggest that persistence of NHIMs may
break down in ‘unbounded geometry’, see Section 3.3.

In Section 3.2 we present an outline of the proof and how it is reduced to a more basic setting M ′×Y of
a trivial normal bundle. Here M ′ is a smoothed version of M to rectify an artificial loss of smoothness,
as occurs e.g. in [Sak90]. Below we present some extensions to the main Theorem 3.1 above.

1.6.1 Non-autonomous systems

Our main theorem can be trivially extended to the non-autonomous, time-dependent case. First, extend
the configuration space with time t as additional variable, i.e. Q̂ =Q ×R, and add the equation ṫ = 1. If
the original system was time-independent, then M̂ = M ×R is a NHIM for the extended system, and
all uniform assumptions still hold, since the flow along the time direction is neutral and trivial. Note
that this argument does not work in the classical theory as M̂ is not compact17. Now we can make
any C 1 small perturbation, and obtain a persistent manifold M̃ in the extended configuration space.
The perturbation is allowed to be generally time-dependent, as long as it is uniform in time, including
derivatives. The resulting manifold M̃ will still be invariant and close to the original M , although it will
depend on time. That is, if we assume local coordinates (x, y) ∈ Rn ×Rm for Q such that M = Rn × {0}
locally, then we can write M̃ = Graph(h) for a function

h : Rn ×R→Rm , y = h(x, t ).

In other words, M̃ can be viewed as a graph over M (i.e. a section of the normal bundle), but this graph
now additionally depends on time. The manifold M̃ itself is again normally hyperbolic when viewed in
the extended space Q ×R, see also Section 4.1.

Such time-dependent invariant manifolds are called ‘integral manifolds’. These have been studied as
non-autonomous generalizations of stable and unstable manifolds of hyperbolic fixed points [Pal75],
but also as generalizations of compact NHIMs [Hal61; Yi93]. The theory of noncompact NHIMs allows
one to treat all such integral manifolds in the same way as the autonomous case. One can, for example,
also start with an integral manifold that is normally hyperbolic: it will persist just as well.

1.6.2 Immersed submanifolds

In the main Theorem 3.1, we intentionally do not precisely state in what sense M is a submanifold
of Q. The implicit assumption that M is an embedded submanifold can be weakened to M being an
immersion, see also [HPS77, Sect. 6] and [BLZ99]. That is, M can be viewed as an abstract manifold
together with an immersion map ι : M →Q that need not be injective. This does not affect the theory
as long as ι is still locally injective: ι(M) including a neighborhood modeled on its normal bundle N
can be pulled back via the immersion ι to the abstract M . All local properties are preserved, so we can
study the system via this ‘covering’. We may not always make a clear distinction between the abstract
manifold M and its immersed image ι(M) ⊂Q; the discussion below shows that this distinction is not
really necessary, as long as we do not consider perturbations.

17If the perturbation is time-dependent, but in an (almost) periodic way, then this can still be treated in the compact setting.
One can extend the configuration space with the circle S1 (or an n-torus in the almost periodic case).
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Dι(m2)

Dι(m1)

Figure 1.6: An immersion with a
transverse intersection.

Figure 1.7: An allowed immersion
with tangential intersection.

For a generic immersion one could expect a picture as in Figure 1.6, where the immersed manifold
intersects itself transversely. Such situations cannot occur if M is a NHIM. This follows from the
exponential growth rates along tangent and normal bundles of M . Let m ∈ ι(M) be an intersection point
of two preimages m1,m2 ∈ M . If the tangent spaces along M at m1 and m2 are embedded differently
into TmQ, then one could find x ∈ Im

(
Dι(m1)

)
\ Im

(
Dι(m2)

)
. This would imply that x has a component

in Nm2 and give contradictory growth rates for DΦt (m) ·x depending on whether we view m as image of
m1 or m2, as the orbit of m ∈ ι(M) is uniquely defined. Hence, at each point m ∈ ι(M) the tangent spaces
Dι(mi ) of all preimages mi ∈ ι−1(m) must coincide, see Figure 1.7. Stated more abstractly, M must have
contact of order one with itself. More generally it holds that an immersed k-NHIM has contact of order
k with itself18, see [HPS77, p. 68].

Next, each maximal set of ι(M) with constant number of preimages19 p ∈N∪ {∞},

Mp = {
m ∈ ι(M)

∣∣ # ι−1(m) = p
}
, (1.12)

is an invariant subset of ι(M). This is again due to uniqueness of the flow. If an orbit would cross into a
set of different preimage number, then a least one of the ‘lifts’ of this orbit from ι(M) to the ‘cover’ M
would have to enter or leave M . This cannot happen as M itself is invariant. Hence, the conclusion is
that self-intersections of ι(M) must be invariant.

Immersed NHIMs may occur on themselves, or appear as a persistent manifold under perturbation
from an embedded manifold. An example of an embedded noncompact NHIM that collapses under a
small perturbation into an immersed manifold can be found in Section 3.3. The same can happen with
an immersed manifold with compact image. The following example is taken from [HPS77, p. 130] and
shows that the injection map is relevant for how the NHIM persists. Note that this example exhibits a
Shil’nikov bifurcation, see Remark 1.15 below.

Example 1.13 (Perturbation of a compact non-injectively immersed NHIM).
We consider on R3 the vector field

ẋ = arctan(x2)+ε,

ẏ = y,

ż =−z

and smoothly modify it outside the cylinder y2 + z2 = 1 such that it flows in the negative x-direction and
connects the basin of repulsion of the origin intersected with x > 0 to the basin of attraction intersected
with x < 0. The perturbation parameter ε is initially set to zero.

18The order of contact is defined as the degree up to and including which the Taylor expansions of the objects agree.
19The number of preimages must be countable if M is assumed to be second-countable.
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Note that the x-axis is a NHIM (the arctangent is there to keep the vector field and tangential growth
rate bounded). Due to the modification, the two loops in Figure 1.8 are also NHIMs of this system, both
separately and their union. They start from the origin along the positive x-axis, then diverge from it
in opposite directions in the x y-plane; once outside the cylinder y2 + z2 = 1 they start moving into the
negative x direction and finally return to the origin approximately along the xz-plane.

We can parametrize their joint image with an injection ι1 mapping M = {0,1}×S1 separately onto the
two loops, but we can also parametrize with ι2 that maps M = S1 onto the full figure eight image. If
we perturb to ε > 0, then ι1 will result in Figure 1.9 where the two loops are separated, while ι2 will
result in Figure 1.10 which has one loop, but the middle of the figure eight does not intersect anymore.
Figure 1.11 shows how the two orbits from the separate loops closely pass the x-axis along hyperbolic
trajectories. The single orbit of ι2 follows hyperbolic trajectories through the other two quadrants. ©

Remark 1.14. Note that these different persistent NHIMs do not contradict the uniqueness property of
persistence, since the (abstract) manifolds M were different to begin with. Formulated differently, if we
consider the universal cover of the tubular neighborhood of ι1(M) (deduplicating the origin as image
point), then Figure 1.9 shows the unique invariant manifold that stays in this tubular neighborhood cover.
We obtain a different persistent NHIM for any prescribed (possibly infinite) sequence of concatenating
the two loops of the original figure eight into an immersion from S1 (or R if the sequence is infinite).

Remark 1.15. This example shows a Shil’nikov bifurcation of a saddle-saddle node and provides an
alternative proof of the result of Shil’nikov [Šil69, Thm. 3] that for every bi-infinite encoding of the
homoclinic loops there exists a unique orbit close to the original homoclinics. We encode the bi-infinite
sequence in the immersion ι of a NHIM. For each ι there exists a unique persistent manifold, and these
correspond to separate orbits after perturbation. In particular, the periodic orbits correspond to those
bi-infinite encodings that are actually periodic and there are countably infinitely many of these. ♦

Finally, we present an example of an injectively immersed (but not embedded) NHIM, see [HPS77, p. 68].
The mapping below is known as Arnold’s cat map.

Example 1.16 (Injectively immersed dense line in the torus).
The matrix

A =
(

2 1
1 1

)
acting on the two-torus T2 is an Anosov diffeomorphism. The line through 0 with slope 1

2 (1−p
5) is

densely immersed in the torus and it is a NHIM for this discrete system. If we take its suspension,
then we have a flow with a NHIM that is densely immersed into the mapping torus

(
[0,1]×T2

)
/∼ with

identification (1, x) ∼ (0, A x). ©

1.6.3 Overflowing invariant manifolds

In many applications of normally hyperbolic systems, the manifold M has a boundary ∂M . A typical
reason is that the system ceases to be normally hyperbolic across the boundary. This happens, for
example, when studying a singularly perturbed, or slow-fast system and in the fast limit there are points
on M with zero eigenvalues in the normal direction. At such points, M is not normally hyperbolic
anymore, so one must restrict M such that these points are outside of M . Another, somewhat artificial
but practical example would be if the invariant manifold is noncompact and one would try to use the
classical theorems that are only applicable to compact manifolds by cutting off M to a compact manifold
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y

z

x

Figure 1.8: a non-injectively immersed
manifold with compact image.

Figure 1.9: the persistent manifold of ι1
consisting of two separate loops.

Figure 1.10: the persistent manifold of ι2
consisting of one figure eight loop without
self-intersection.

y

z

x

Figure 1.11: projection onto the y z-plane
showing the orbits of the persistent mani-
fold ι1 while passing the origin.

with boundary. One can try to attack this latter case with our more general theory for noncompact
manifolds. The additional uniformity assumptions should be checked then.

If M is a manifold with boundary, some persistence results can still be retained. This idea was introduced
by Fenichel [Fen72] in studying so-called overflowing invariant manifolds. These are normally hyper-
bolic manifolds that are invariant under backward time flow, or in other words, only under the forward
flow, orbits can leave, i.e. ‘overflow’ the manifold. The condition of overflowing invariant is slightly
stronger: the vector field must strictly point outward at the boundary. This weakened version that the
manifold is negatively invariant does come at the additional cost that only stable normal directions
are allowed. The time-reversed situation of an inflowing invariant manifold with only unstable normal
directions is equivalent. In Section 4.3 we discuss how this idea can be incorporated into the Perron
method proof.

The attention of the reader is also drawn to the following remark made in [Fen72, p. 214]. If an open
submanifold N ⊂ M is overflowing invariant, and the spectral gap condition is satisfied on N with a
higher ratio rN than on the whole of M , then the persistent manifold Ñ over N retains C rN smoothness,
even if smoothness of M̃ will generally be lower.
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1.7 Induced topology

In this work the topologies for spaces of vector fields, submanifold embeddings, et cetera, are (implicitly)
defined by norms and distance functions. The norms we use are uniform C k -norms for bounded
functions, and families with additional exponential growth rates. Let us call the topologies induced by
these norms C k

b -topologies and consider how they compare to two common topologies: the weak and
strong Whitney topologies for maps between manifolds, alternatively known as the compact-open and
fine topology, see [Hir76].

The weak topology has a subbasis generated by the set of functions g that are close to some function f
in C k -norm on compact subsets in local coordinate charts. This means that for example the function
family

fδ : R→R : x 7→ δ exp(x2)

converges to zero for δ→ 0 in this topology. On any compact set fδ will become arbitrarily small when
δ→ 0 while it does not converge in uniform norm (nor with additional exponential growth rate). Hence
the weak topology is weaker than our induced C k

b -topologies.

The strong topology has as basis all sets of functions g that are close to some function f on a locally finite
cover by compact sets Ki , where g must approximate f in C k -norm on each Ki in local coordinates up
to a given chart-dependent size εi . For any function without compact support, a collection εi > 0 can be
found that converges faster to zero on each larger Ki than the function to zero when x →∞. Hence the
only sequences of functions R→R that converge to the zero function in the strong topology are those
with (eventually) compact support. A family fδ of functions with noncompact support cannot converge
to the zero function, as can be seen by using a diagonal argument. The family fδ(x) = δ exp(−x2), for
example, does not converge to the zero function in the strong topology. Given a locally finite cover of R
by compact sets Ki , we choose xi ∈ Ki and corresponding εi = exp(−x2

i )/i . Then for any given δ> 0, we
will have | fδ(xi )| > εi for some large i . On the other hand, this family fδ obviously converges under the
uniform norm with any exponential growth rate. Thus, the strong topology is stronger than our induced
C k

b -topologies, see also the remark in [GG73, p. 43] for noncompact manifolds.

We conclude that the C k
b -topologies induced by our uniform norms are not equivalent to either the weak

or strong Whitney topology, because the weak topology allows arbitrary behavior of functions outside
compact sets, while the strong topology completely restricts that behavior. Our norms allow moderate
variations at infinity. In general, ‘moderate behavior’ is not well-defined on a general noncompact
manifold, as it depends on the choice of charts. In the setting of bounded geometry, though, the
uniform, metric structure makes this behavior unambiguous; we can restrict to normal coordinate
charts and consider ‘moderate behavior’ with respect to these. Note that these topologies are equivalent
on compact domains.

1.8 Notation

Here, we will establish some notation and conventions to be used throughout this work. See the index
for more specific symbols.

• The letters I and J will denote intervals in R; I will typically represent an interval that is unbounded
on one side, while J will be bounded.



1.8. NOTATION 25

• ε,δ> 0 will denote (small) bounds for continuity-like estimates; C > 0 will denote arbitrary bounds.
The specific meaning of these symbols will vary depending on context. ε f (δ) will denote a uniform
continuity modulus of the function f , that is, ε f : R≥0 →R≥0 satisfies

d( f (x2), f (x1)) < ε f (d(x2, x1)) and lim
δ→0

ε f (δ) = 0. (1.13)

Without subscript f this will denote an arbitrary continuity modulus.

• The D denotes a total derivative, while Di with index i ∈N denotes a partial derivative with respect
to the i -th argument, or, when a subscript symbol is appended, say Dx , then this denotes a partial
derivative with respect to the argument commonly referred to by that symbol.

• We use the following symbols to denote classes of function spaces:

Cb bounded, continuous functions;
Cb,u bounded, uniformly continuous functions;
C k k times continuously differentiable functions;
C k,α C k functions with α-Hölder continuous k-th derivative. We will conventionally write

r = k +α ∈R≥1; the Hölder estimates are assumed to be uniform in C k,α
b,u spaces.

L continuous, i.e. bounded, (multi)linear operators;
X vector fields;
Γ sections of a fiber bundle.

Unless otherwise specified, C k
b and C k,α

b spaces will be endowed with the canonical norms that turn
these into Banach spaces, that is,

‖ f ‖k,α = ∑
0≤n≤k

sup
x

‖Dn f (x)‖+ sup
x2 6=x1

‖Dk f (x2)−Dk f (x1)‖
d(x2, x1)α

. (1.14)

We define the operator norm on a multilinear operator A ∈Lk (V1 × . . .×Vk ;W ) as

‖A‖ = sup
vi∈Vi‖vi ‖=1

‖A(v1, . . . , vk )‖. (1.15)

This multilinear operator norm can be extended to sections s of real-valued tensor bundles by taking
the operator norm pointwise of s(x) as a multilinear operator into R.

• On a Riemannian manifold, Γ will denote the Christoffel symbols, while Π will be used for parallel
transport along a curve given as argument, for example, Π(γ|ba) will denote parallel transport along
the curve γ restricted to the interval [a,b]. We shall denote induced parallel transport on products of
the tangent bundle by Π(γ|ba)⊗k .

• We shall often work with maps that are defined on the tangent space over a point x ∈ M and denote
this dependence on x by a subscript, for example hx : Tx M → Tx M . If we want to refer to the whole
family of such maps for all x ∈ M , then we denote this by

h• : T•M → T•M ,

particularly if we want to stress that this family satisfies some properties uniformly in x.

• We use the notation B(x;δ) not only to indicate open balls of radius δ around a single point x, but
also B(M ;δ) to indicate a (tubular) neighborhood of some set or submanifold M , that is,

B(M ;δ) = {x | d(M , x) < δ}.
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The following definition of a scale of Banach spaces (cf. [VG87]) is fundamental to the rest of this
work.

Definition 1.17. Let X be a normed linear space and F =C (I ; X ) the space of continuous functions from
an interval I ⊂R to X . We define a family of exponential growth norms with parameter ρ ∈R by

‖ f ‖ρ = sup
t∈I

‖ f (t )‖e−ρ t for f ∈F . (1.16)

We define Bρ(I ; X ) to be the normed space consisting of all functions f ∈ F with ‖ f ‖ρ <∞. If X is a
Banach space, then Bρ(I ; X ) is a Banach space as well.

Remark 1.18. When the interval I is bounded from below, then the embedding Bρ1 (I ; X ) ,→ Bρ2 (I ; X ) is
continuous for ρ1 ≤ ρ2. The time reversed version when I is bounded above and ρ2 ≤ ρ1 holds, will fre-
quently recur throughout this work. See also Remark B.4 and the note on integrals of exponentials (1.18)
below. In Chapter 3 we shall use I =R≤0 and negative rates ρ, while in the appendices B and C we use
(the somewhat more natural) I =R≥0; though ρ’s can take both signs there. ♦

The definition of an exponential growth norm can be generalized to curves mapping into a metric space.
Let (X ,d) be a metric space, then analogously to 1.17, we define a family of exponential growth distance
functions on F by

dρ( f1, f2) = sup
t∈I

d
(

f1(t ), f2(t )
)

e−ρ t . (1.17)

Note that this distance function might be infinite for some x1, x2 ∈F .

We will be working with exponential growth estimates of the form C eρ t throughout this paper. The pair
of numbers C > 0,ρ ∈R that determine such a growth estimate will be referred to as exponential growth
numbers, and ρ as an exponential growth rate.

We will frequently encounter integrals over a time interval, where the integrand obeys an exponential
estimate. As long as the interval [a,b] is bounded in the direction of exponential growth and ρ 6= 0, these
can be estimated as ∫ b

a
eρ t dt ≤ 1

|ρ| exp
(

sup
t∈[a,b]

ρ t
)
. (1.18)

We also state here some basic facts about uniformly Hölder continuous functions.

Lemma 1.19 (Product rule for Hölder continuity).
Let f , g ∈Cα

b,u be defined on spaces such that the product f · g is well-defined. Then also f · g ∈Cα
b,u .

Proof. Let ‖ f ‖0, ‖g‖0 ≤ M and let C f ,α, Cg ,α be the respective Hölder coefficients of f , g . Then we have
for all x1 6= x2

‖ f (x2) g (x2)− f (x1) g (x1)‖ ≤ ‖ f (x2)‖‖g (x2)− g (x1)‖+‖ f (x2)− f (x1)‖‖g (x1)‖
≤ M (C f ,α+Cg ,α)‖x2 −x1‖α,

which exhibits the Hölder coefficient M (C f ,α+Cg ,α) for the product, and f · g is clearly bounded by
M 2.

Lemma 1.20. Let f ∈Cα
b,u . Then it also holds that f ∈Cβ

b,u for any 0 <β<α.

Proof. Let M be the bound on f , and Cα its α-Hölder coefficient. For ‖x2 −x1‖ ≤ 1 the estimate for β
follows automatically from that of α. For ‖x2 −x1‖ > 1 we use boundedness to obtain

‖ f (x2)− f (x1)‖ ≤ 2 M ≤ 2 M ‖x2 −x1‖β.

Hence, Cβ = max(Cα,2 M) suffices as β-Hölder coefficient.
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Typographical conventions

As usual we close proofs with the symbol , while we shall use ♦ and © to denote the end of (a series
of) remarks or examples, respectively.
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Chapter 2

Manifolds of bounded geometry

For noncompact normally hyperbolic systems, uniformity assumptions that were implicit in the com-
pact case must be made explicit. Not only assumptions on the vector field, but on the underlying space
as well. For this we need the concept of bounded geometry; Section 3.3 contains a discussion and
examples for why we require this concept.

The class of manifolds of bounded geometry allows us to uniformly apply constructions that are well-
known for compact manifolds. We single out the atlas of normal coordinate charts and derive from
the very definition of bounded geometry that all constructions and estimates are uniform over all such
charts. For completeness, we present here all results that we need later on. Some of these results are
already present in the literature: the construction of a uniformly locally finite cover and a subordinate C k

uniformly bounded partition of unity, and bounded coordinate transformations can be found in [Shu92;
Sch01], for example, while [Roe88] includes the result on finite coloring of the connectedness graph of
a uniformly locally finite cover and the construction of a trivial bundle embedding in Proposition 7.5
with a sketch of the proof. I have not been able to find in the literature the results about the existence
of a uniform tubular neighborhood and the approximation of a submanifold by a smoothed manifold.
Submanifolds are allowed to be non-injectively immersed.

This chapter is organized as follows. First, the material is presented that is already required for the global
coordinate setting of Theorem 3.2. These include the basic definitions of bounded geometry, related
results on bounded coordinate transition maps, uniform covers and partitions of unity, and an explicit
relation between holonomy and curvature. Then we continue to work towards the final goal of this
chapter: to reduce a noncompact normally hyperbolic system from a setting in general manifolds to a
trivial bundle setting, in order to generalize the persistence theorem to the former setting. To this end,
we need some more technical results: a uniform tubular neighborhood, smooth approximation of a
submanifold, and embedding into a trivial bundle.

This chapter relies heavily on some more advanced concepts from differential and specifically Riemann-
ian geometry. On the other hand, the results are used as tools in solving a dynamical systems problem.
Appendix F provides a quick review for non-experts of the most relevant geometric concepts used here.
It also provides further references to the literature. We shall assume the contents of this appendix known
from here on.

I suggest the reader to at least take a glance at the first two sections of this chapter to familiarize himself
with the basic definitions and results of bounded geometry, without the need to go through the details
of the proofs. Then, depending on his interest, he can choose to delve into the more technical geometric

29
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details or skip to Chapter 3 for the more analytical side of the proof of Theorem 3.2, and possibly return
later to read how Theorem 3.1 is reduced to the former.

2.1 Bounded geometry

We follow the definition in [Eic91] to introduce bounded geometry. Recall that the injectivity radius
rinj(x) at a point x ∈ M is the maximum radius for which the exponential map at x is a diffeomorphism,
see also Appendix F.

Definition 2.1 (Bounded geometry).
We say that a complete, finite-dimensional Riemannian manifold (M , g ) has k-th order bounded geometry
when the following conditions are satisfied:

(I) the global injectivity radius rinj(M) = inf
x∈M

rinj(x) is positive, rinj(M) > 0;

(Bk ) the Riemannian curvature R and its covariant derivatives up to k-th order are uniformly bounded,

∀ 0 ≤ i ≤ k : sup
x∈M

‖∇i R(x)‖ <∞,

with operator norm of ∇i R(x) as an element of the tensor bundle over x ∈ M.

Remark 2.2. The conditions (I) and (Bk ) are independent. We present a simple example which exhibits
zero infimum for the injectivity radius while all derivatives of the curvature are globally bounded. Indeed,
let M = R×S1 be a cylinder with metric g = dx2 + e−2x dθ2 in coordinates (x,θ), see also Figure1 3.3
on page 71. The injectivity radius rinj(M) is zero since the cylinder circumference shrinks to zero
with x →∞. Global boundedness of the curvature and all of its derivatives follows from a symmetry
argument. The family

ϕξ,α : (x,θ) 7→ (x +ξ,eξθ+α) with ξ ∈R, α ∈ [0,2π)

is a set of local isomorphisms that acts transitively on M . That is, for any two points (x1,θ1), (x2,θ2) ∈ M
there exist ξ,α and a neighborhood U 3 (x1,θ1) such that ϕξ,α : U → ϕξ,α(U ) is an isomorphism and
ϕξ,α(x1,θ1) = (x2,θ2). For any (x,θ) ∈U and v, w ∈ T(x,θ)M we have

(ϕ∗
ξ,αg )(x,θ)(v, w) = g(x+ξ,eξ θ+α)

(
Dϕξ,α(x,θ) v,Dϕξ,α(x,θ) w

)
= dx(v)dx(w)+e−2(x+ξ) eξdθ(v)eξdθ(w)

= g(x,θ)(v, w)

so ϕ∗
ξ,αg = g on U . Since the curvature and its derivatives are locally determined, this implies that these

are constant across M , hence uniformly bounded (actually all derivatives of R vanish). Note that these
local isometries do not imply a finite global injectivity radius since the size of the neighborhood U does
depend on the points (x1,θ1), (x2,θ2) ∈ M . ♦

Example 2.3 (Manifolds of bounded geometry).
The following are examples of manifolds with bounded geometry of any (i.e. infinite) order.

• Euclidean space with the standard metric trivially has bounded geometry.

1This is a noncompact surface with constant negative curvature, hence it cannot be isometrically embedded into R3,
see [Hil01]. The embedding is nearly isometric for x À 0 though, so the figure is still a good representation there.
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• A smooth, compact Riemannian manifold M has bounded geometry as well; both the injectivity
radius and the curvature including derivatives are continuous functions, so these attain their finite
minimum and maxima, respectively, on M . If M ∈C k+2, then it has bounded geometry of order k.

• Noncompact, smooth Riemannian manifolds that possess a transitive group of isomorphisms
(such as hyperbolic space) have bounded geometry since the finite injectivity radius and curvature
estimates at any single point translate to a uniform estimate for all points under isomorphisms. Note
that the example in Remark 2.2 above shows that it is not sufficient to have local isometries.

More manifolds of bounded geometry can be constructed with these basic building blocks in the
following ways.

• The product of a finite number of manifolds of bounded geometry again has bounded geometry,
since the direct sum structure of the metric is inherited by the exponential map and curvature. We
give an outline of the proof. In a product coordinate chart

(ϕ1,ϕ2) : U1 ×U2 →Rn1 ×Rn2

with coordinates (x1, x2), the metric has diagonal form

g (x1, x2) = (g1 ⊕ g2)(x1, x2) =
(

g1(x1) 0
0 g2(x2)

)
.

The coordinate dependence on x1, x2 is non-mixed and this is preserved under taking derivatives
and index contractions, so R will split into a direct sum of R1 and R2 again. This can be extended to
derivatives of R.

A geodesic in M1 ×M2 is precisely given by γ= (γ1,γ2) where γ1, γ2 are geodesics parametrized with
constant speed in M1, M2, respectively. This follows easily since minimization of length is equivalent
to minimization of the energy functional

2E(γ) =
∫ b

a
g (γ̇, γ̇) dt =

∫ b

a
g1(γ̇1, γ̇1)+ g2(γ̇2, γ̇2) dt

and this splits nicely into independent minimization problems for γ1 and γ2. With a little effort one
sees that rinj(M) ≥ min

(
rinj(M1),rinj(M2)

)
.

• If we take a finite connected sum of manifolds with bounded geometry such that the gluing modifica-
tions are smooth and contained in a compact set, then the resulting manifold has bounded geometry
again.

• We can endow the tangent bundle TM of a Riemannian manifold (M , g ) with the natural Sasaki
metric [Sas58]. Let xi denote coordinates on an open neighborhood U ⊂ M . These coordinate
functions can be pulled back to TU and the one-forms dxi can be viewed as additional coordinates
v i such that the xi , v j together form a complete set of induced coordinates on TU . With respect to
these coordinates the Sasaki metric is given by

ĝ (x, v) = gi j (x)
(
dxi dx j +Dv i Dv j ) where Dv i = dv i +Γi

j k v j dxk (2.1)

and Γi
j k denote the Christoffel symbols on M , while the dv i are one-forms on the manifold TU .

Bounded geometry of (M , g ) is not inherited by (TM , ĝ ) since the extended Riemannian curvature R̂
contains unbounded terms v when expressed in terms of R , see [GK02, Prop. 7.5]. These expressions
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do readily show that the restriction Tr M = {(x, v) ∈ TM | gx (v, v) ≤ r 2} satisfies curvature bounds
of order k −1 if (M , g ) has k-bounded geometry. The geodesic flow equation is given in induced
coordinates by [Sas58, eq. (7.7)]. By application of Theorem A.6, one can then show that the injectivity
radius is bounded.

Note that Tr M is a manifold with boundary, but this is not problematic in our setting as long as
the invariant submanifold stays away from the boundary. Alternatively one could try to use results
from [Sch01]. ©

When we say that a manifold has bounded geometry without specifying the order k, then it is assumed
that the order is infinite, k =∞, or sufficiently large. When k ≥ 1 we have the following result, see [Eic91,
Thm. 2.4 and Cor. 2.5]. In case k =∞ the converse also holds [Roe88, Prop. 2.4].

Theorem 2.4 (Boundedness of the metric).
Let (M , g ) be a Riemannian manifold of k-bounded geometry. Then there exists a δ > 0 such that the
metric up to its k-th order derivatives and the Christoffel symbols up to its (k−1)-th order derivatives are
bounded in normal coordinates of radius δ around each x ∈ M, and the bounds are uniform in x.

This basic fact can be used to make the properties of all kinds of constructions uniform over a non-
compact manifold. Note that here and in the following, all uniformity estimates are assumed globally
valid, that is, independent of the point x ∈ M . To stress this, we shall use notation f•, for example as in
Definition 2.9, to indicate that the family of maps { fx }x∈M satisfies continuity estimates independent
of x.

With Theorem 2.4 at hand, we shall exclusively use normal coordinates for local coordinate calculations.
To establish notation, we say that

ϕ= exp−1
x : B(x;δ) ⊂ M → B(0;δ) ⊂ Tx M (2.2)

is a normal coordinate chart at x ∈ M . The radius δ will always be chosen smaller than the injectivity
radius rinj(M), so ϕ is a diffeomorphism. Each tangent space Tx M carries the inner product gx , hence is
isometric to Euclidean space Rn (but identification requires a choice of basis).

Proposition 2.5. Let (M , g ) be a Riemannian manifold of k ≥ 1 bounded geometry. For every C > 1 there
exists a δ> 0 such that the normal coordinate charts ϕx in (2.2) are defined on B(x;δ) for each x ∈ M and
the Euclidean distance dE on the normal coordinates is uniformly C -equivalent to the metric distance d
induced by M, that is,

∀x1, x2 ∈ B(x;δ) : C−1 d(x1, x2) ≤ dE (ϕx (x1),ϕx (x2)) ≤C d(x1, x2).

Proof. Let δ< 1
2 rinj(M) and x ∈ M . We consider a normal coordinate chart ϕx on B(x;2δ). According to

Theorem 2.4, the metric g and its derivatives are bounded in normal coordinates. We have (exp∗
x g )(0) =

gx , the Euclidean inner product on Tx M , while the total derivative D(exp∗
x g )(ξ) is bounded on B(0;2δ) 3

ξ, say by ‖D(exp∗
x g )(ξ)‖ ≤ C1, independent of x ∈ M . By the mean value theorem this induces the

uniform bounds

1−2δC1 ≤ ‖(exp∗
x g )(ξ)‖ ≤ 1+2δC1.

Let x1, x2 ∈ B(x;δ) and let γE be the straight curve between ϕx (x1) and ϕx (x2) in Tx M parametrized by
arc length. This curve γE attains the Euclidean distance lE (γE ) = dE (ϕx (x1),ϕx (x2)). On the other hand,
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it gives an upper bound on the metric distance

d(x1, x2) = inf
γ

l (γ) ≤
∫ lE (γE )

0

√
(exp∗

x g )γE (t )
(
γ′E (t ),γ′E (t )

)
dt

≤
√

1+2δC1 dE
(
ϕx (x1),ϕx (x2)

)
.

Let γ be a geodesic minimizing the distance d(x1, x2). Then γ is contained in B(x;2δ): the distance from
each xi to the boundary of B(x;2δ) is at least δ, so if γ would leave and reenter B(x;2δ) then its length
would be at least 2δ. On the other hand, x1 and x2 can be connected via x with a curve of length less
than 2δ. Let us write η = ϕx ◦γ and assume that η is parametrized by arc length with respect to the
Euclidean metric gx . Then we obtain an inverse estimate to the one above:

dE (ϕx (x1),ϕx (x2)) ≤
∫ lE (η)

0
1 dt ≤

∫ lE (η)

0
(1−2δC1)−

1
2

√
(exp∗

x g )η(t )
(
η′(t ),η′(t )

)
dt

= (1−2δC1)−
1
2

∫ lE (η)

0

√
gγ(t )

(
γ′(t ),γ′(t )

)
dt

≤ (1−2δC1)−
1
2 d(x1, x2).

Finally, we complete the proof by choosing δ> 0 small enough that

max
(
(1+2δC1)

1
2 , (1−2δC1)−

1
2
)≤C .

From here on, we shall frequently represent objects living in B(x;δ) ⊂ M on normal coordinate neighbor-
hoods B(0;δ) ⊂ Tx M via the normal coordinate chart ϕx . We will mostly use B(x;δ) to clearly indicate
the base point, or B(0x ;δ) ⊂ Tx M to stress the tangent space domain of the coordinates as well. In
spaces of bounded geometry, normal coordinate charts are the natural charts to works in and coordinate
transition maps are not just smooth, but uniformly bounded, as stated in the following lemma.

Lemma 2.6 (Boundedness of transition maps).
Let (M , g ) be a Riemannian manifold of k-bounded geometry with k ≥ 2. There exists a δ with 0 < δ<
rinj(M) and constants C , L > 0 such that for all x1, x2 ∈ M with d(x1, x2) < δ the following holds.

i. The coordinate transition map

ϕ2,1 =ϕ2 ◦ϕ−1
1 : U → Tx2 M with U =ϕ1(B(x1;δ)∩B(x2;δ)) ⊂ Tx1 M (2.3)

is C k−1 bounded with ‖ϕ2,1‖k−1 ≤C .

ii. Let γ2,1 : [0,1] → B(x1;δ) be the unique shortest geodesic connecting x1 and x2 and let Π(γ2,1) be the
associated parallel transport. Then the map

ϕ2,1 −Π(γ2,1) : U → Tx2 M

has C k−2-norm bounded by the Lipschitz estimate

‖ϕ2,1 −Π(γ2,1)‖k−2 ≤ L d(x1, x2). (2.4)

Remark 2.7. One degree of smoothness is lost because the exponential map is defined in terms of
the geodesic flow. This flow in turn is defined in terms of the Christoffel symbols, which depend on
derivatives of the metric, so these are only C k−1 bounded. We lose another degree of smoothness in
estimating ϕ2,1 −Π(γ2,1) since the Lipschitz estimate follows from a uniform bound on one higher
derivative of these. ♦
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We shall first compare both ϕ2,1 and Π(γ2,1) to the identity in normal coordinates and finally conclude
with the triangle inequality that their difference must be small. We compareϕ2,1 to the parallel transport
Π(γ2,1) since this is the most natural way to identify the tangent spaces Tx1 M and Tx2 M .

Proof. Let B(x1;δ), B(x2;δ) be two normal coordinate neighborhoods with nonempty intersection.
The coordinate transition map ϕ2,1 =ϕ2 ◦ϕ−1

1 = exp−1
x2

◦expx1
can be studied as the exponential map

expx1
: Tx1 M → M in normal coordinates on B(x2;δ), since ϕ2 = exp−1

x2
. From here on, we will implicitly

be working in normal coordinates around x2, using some choice of basis to isometrically identify
Tx2 M ∼=Rn .

Let x ∈ B(x1;δ)∩B(x2;δ), hence x1 ∈ B(x2;2δ). We choose δ≤ 1, and small enough so that the results of
Theorem 2.4 and Proposition 2.5 (with C = 2) hold for 2δ. The exponential map is given by the time-one
geodesic flow projected on the base manifold. For the base point x2, this is the identity map, while for
the base point x1 we will show that it is a small perturbation thereof. The geodesic flow on TM is given
in local coordinates by

ẋi = v i ,

v̇ i =−Γi
j k (x) v j vk ,

(2.5)

where Γi
j k denote the Christoffel symbols with respect to the coordinates xi on M and the v j are

induced additional coordinates on TM , see the explanation above (2.1). The Christoffel symbols are
C k−1 bounded due to Theorem 2.4. LetΥt denote the geodesic flow of (2.5) on TM restricted to B(x2;2δ).
We denote by (x(t ), v(t )) a solution curve ofΥt . The geodesic flow preserves the length of tangent vectors
with respect to the metric g , so we have ‖v(t )‖ ≤ 2‖v(0)‖ ≤ 2δ with respect to the Euclidean distance in
the normal coordinates. This implies that the vector field (2.5) is bounded in these induced coordinates.
Hence, by Theorem A.6, Υt ∈ C k−1

b is bounded as well on the interval [0,1]. Moreover, DΥt ∈ C k−2
b

exhibits a Lipschitz estimate for the base point dependence ‖ϕ2(x1)‖E . By Proposition 2.5 the local
Euclidean distance is equivalent to the distance on M , so ‖ϕ2(x1)‖E ≤ 2d(x1, x2). These conclusions
directly translate to expx ( · ) =π◦Υ1(x, · ) and we conclude that ϕ2,1 = exp−1

x2
◦expx1

∈C k−1
b with bound

C > 0 uniform in x1, x2 ∈ M and that ‖ϕ2,1 −1‖k−2 ≤ L′ d(x1, x2) for some L′ > 0.

The parallel transport Π(γ2,1) is given by integrating the pullback of the connection along γ2,1. This
yields a differential equation similar to (2.5) and similarly leads to C k−1 boundedness estimates in
normal coordinates and Lipschitz estimates for the C k−2-norm. Thus, the difference ϕ2,1 −Π(γ2,1) is
C k−1 bounded, and has C k−2-norm that satisfies the Lipschitz estimate (2.4) for some L > 0.

Definition 2.8 (M-small coordinate radius).
Let (M , g ) be a Riemannian manifold of bounded geometry. We define δ> 0 to be M-small if Theorem 2.4
and Lemma 2.6 hold on all normal coordinate charts of radius δ.

Note that such a δ> 0 always exists. From now on, we shall always assume to have selected such a δ
for any given manifold of bounded geometry and restrict its atlas to include these normal coordinate
charts only.

Lemma 2.6 shows that normal coordinate transformations respect C k boundedness of functions in
coordinate representations. Thus, it is natural to consider manifolds of bounded geometry as the class
of C k bounded manifolds with respect to this restricted atlas. This also makes the following definition
natural.

Definition 2.9 (C k bounded maps).
Let X ,Y be Riemannian manifolds of k+1-bounded geometry and f ∈C k (X ;Y ). We say that f is of class
C k

b when there exist X ,Y -small δX , δY > 0 such that for each x ∈ X we have f (B(x;δX )) ⊂ B( f (x);δY )
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and the representation
f̃x = exp−1

f (x) ◦ f ◦expx : B(0;δX ) ⊂ Tx X → Ty Y (2.6)

in normal coordinates is of class C k
b and the associated C k -norms of f̃• are bounded uniformly in x ∈ X .

We define the classes of C k
b,u(X ;Y ) and C k,α

b,u (X ;Y ) functions analogously when X ,Y are of k+2-bounded
geometry.

Remark 2.10. We shall say that a vector field v ∈X(X ) is of class C k
b , also denoted by v ∈Xk

b(X ), when
v ∈C k

b with respect to coordinates on TM induced by normal coordinates on M . This is slightly different
from normal coordinates on TM induced by the metric (2.1). Note that since ‖v‖ ≤ r is assumed
bounded, we could restrict to the submanifold Tr M of bounded geometry and consider v ∈C k

b (M ;Tr M),
but this is less practical.

Remark 2.11. The manifolds X ,Y need to have bounded geometry of one or two degrees higher than
the smoothness of the maps to preserve boundedness and uniform continuity estimates under normal
coordinate transformations. This shall from now on always be an implicit assumption.

Remark 2.12 (Locally/globally defined continuity modulus).
The continuity modulus ε f of a function f ∈C k

b,u(X ;Y ) is only defined on the interval [0,δX ) ⊂R. On

the other hand, ‖Dk f (x)‖ is globally well-defined in terms of local charts and assumed to be bounded.
We shall want to compare Dk f at points x1, x2 far apart. If we have isometric isomorphisms

ϕ : Tx1 X ∼−→ Tx2 X and ψ : T f (x1)Y
∼−→ T f (x2)Y ,

then this allows us to compare

‖Dk f (x2)◦ϕ⊗k −ψ◦Dk f (x1)‖ ≤ ‖Dk f (x2)‖+‖Dk f (x1)‖. (2.7)

Note that the right-hand expression does not depend on the choice2 of isomorphisms.

Thus, with such isomorphisms at hand, we can use (2.7) to heuristically extend the local to a global
continuity modulus. That is, for nearby points x1, x2 we use an estimate in terms of local charts; if this is
not possible, then the points must be separated by a distance larger than a δ as in Definition 2.8. Since
the functions we consider are globally bounded, we then use some (non-canonical) choice to identify
the vector bundle fibers over x1, x2 that the function lives in and estimate by the right-hand side of (2.7).
This estimate is crude but independent of the choice of identification and will always satisfy our needs.
For example, if f ∈C k,α

b,u (X ;Y ), with Hölder coefficient Cα locally for d(x1, x2) ≤ δ then we have

‖Dk f (x2)−Dk f (x1)‖ ≤
{

Cαd(x1, x2)α if d(x1, x2) < δ,
2‖ f ‖k

δα d(x1, x2)α else.

This shows that we can heuristically consider max
(
Cα, 2‖ f ‖k

δα

)
as a global Hölder coefficient. ♦

The following proposition shows that we may measure continuity of the derivatives of a function f using
local parallel transport. With the remark above we see how it can be extended to a global continuity
modulus if a (non-unique) choice is made for how to connect non-close points x1, x2 by a path; this
idea will be developed in Section 3.7.4.

2In practice, we shall use isomorphisms defined by parallel transport on X = Y , cf. Proposition 2.13. This is a non-canonical
choice, since it depends on the path connecting x1, x2. A canonical choice that depends continuously on x1, x2 cannot be
made in general, since it would imply that the tangent bundle is trivializable.
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Proposition 2.13 (Equivalence of continuity moduli).
Let X , Y be Riemannian manifolds of bounded geometry and f ∈C k

b (X ;Y ). Then the following statements
are equivalent:

i. f ∈C k,α
b,u (X ;Y ) according to Definition 2.9;

ii. we have the continuity estimate

∃ ε f ,Π ∈Cα(R+;R+), δ0 > 0: ∀ x1, x2 ∈ X , d(x1, x2) ≤ δ0 :∥∥Dk f̃x2 (0) ·Π(γ2,1)⊗k −Π(η2,1) ·Dk f̃x1 (0)
∥∥≤ ε f ,Π(d(x1, x2)),

(2.8)

where Π(η2,1) and Π(γ2,1)⊗k denote parallel transport along the unique shortest geodesic between
f (x1), f (x2) and x1, x2, respectively, and ε f ,Π denotes a uniform or α-Hölder continuity modulus.

Proof. We first prove the statement in case Y is a normed linear space, hence no parallel transport term
Π(η2,1) appears.

Let δ0 ≤ δX as in Definition 2.9 (thus, in particular δ0 is X -small), and let d(x1, x2) ≤ δ0. Then we have
the Lipschitz estimate ‖ϕ2,1 −Π(γ2,1)‖ ≤ L d(x1, x2) while the normal coordinate representations (2.6) of
f at x1, x2 are related by f̃x1 = f̃x2 ◦ϕ2,1. This leads to∥∥Dk f̃x2 (0) ·Π(γ2,1)⊗k −Dk f̃x1 (0)

∥∥
= ∥∥Dk f̃x2 (0) ·Π(γ2,1)⊗k −Dk [ f̃x2 ◦ϕ2,1](0)

∥∥
≤ ∥∥Dk f̃x2 (0) ·Π(γ2,1)⊗k −Dk f̃x2 (ϕ2,1(0)) · (Dϕ2,1

)⊗k∥∥
+

k−1∑
l=1

‖Dl f̃x2 (ϕ2,1(0)) ·Pl ,k
(
D•ϕ2,1(0)

)‖
≤ ∥∥Dk f̃x2 (0)−Dk f̃x2 (ϕ2(x1))

∥∥+‖Dk f̃x2 (ϕ2(x1))‖‖Π(γ2,1)−Dϕ2,1‖k

+
k−1∑
l=1

‖Dl f̃x2 (ϕ2(x1))‖‖Pl ,k
(
D•ϕ2,1(0)

)‖
≤ ε f (d(x2, x1))+‖ f ‖k

(
L d(x1, x2)

)k +
k−1∑
l=1

‖ f ‖l ‖Pl ,k
(
D•ϕ2,1(0)

)‖,

where ε f denotes the continuity modulus of f and its derivatives according to Definition 2.9, and
the Pl ,k denote (l ,k)-linear maps according to Proposition C.3. We used the fact that both Π(γ2,1) and
Dϕ2,1(0) act on the k-tensor bundle as a k-tuple of copies. By assumption ‖ f ‖k is bounded, and to
estimate the Pl ,k terms, we note that l < k, so each of the Pl ,k contains at least a factor Diϕ2,1(0) with
i ≥ 2. Since ϕ2,1 is close to Π(γ2,1) and DiΠ(γ2,1) = 0 for i ≥ 2, it follows that

‖Pl ,k
(
D•ϕ2,1(0)

)‖ ≤C L d(x1, x2)

for some constant C independent of x1, x2. This shows that the continuity modulus ε f ,Π of (2.8) can be
estimated by the continuity modulus ε f plus additional Lipschitz terms. We can reverse the estimates
above to arrive at the same conclusion when expressing ε f in terms of ε f ,Π. Hence, the continuity
statements are equivalent for any α≤ 1.

If Y is a Riemannian manifold of bounded geometry, we just apply the same estimates in the codomain.
To this end, we must have d( f (x2), f (x1)) ≤ δY , so we choose δ0 small enough that

d( f (x2), f (x1)) ≤ ‖D f ‖d(x2, x1) ≤ ‖ f ‖1δ0 ≤ δY

holds with δY as in Definition 2.9.
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The definition of bounded geometry can be extended to vector bundles, see also [Shu92, p. 65].

Definition 2.14 (Vector bundle of bounded geometry).
Let (M , g ) be a manifold of bounded geometry and δ be M-small as in Definition 2.8. We say that a vector
bundle π : E → M with fiber F has k-th order bounded geometry when there exist preferred trivializations

τ : π−1(B(m;δ)
)→ B(m;δ)×F for each m ∈ M (2.9)

such that if we have a transition function ϕ2,1 = τ2 ◦τ−1
1 between two trivializations on B(m1;δ) and

B(m2;δ), then the function g : B(m1;δ)∩B(m2;δ) →L(F ) defined by ϕ2,1(m, f ) = g (m) f satisfies g ∈C k
b

independent of the points m1,m2 ∈ M.

Remark 2.15. Note that we could have replaced B(m;δ) by arbitrary (preferred) coordinate charts. The
relevant property is that we express uniformity of the transition functions in terms of uniformity of the
function g with respect to the underlying coordinate charts of M , which are normal coordinates in our
case. ♦

It follows from Lemma 2.6 that the tangent bundle TM has bounded geometry of order k −2 if (M , g )
has bounded geometry of order k ≥ 2. One order of smoothness is lost (beyond the one expected) as
noted in Remark 2.7.

We introduce the concept of a uniformly locally finite cover of a manifold of bounded geometry. This is
a natural extension of a locally finite cover. Uniformity means that we require a global bound K on the
number of sets in the cover that intersect any small open ball.

Lemma 2.16 (Uniformly locally finite cover).
Let (M , g ) be a Riemannian manifold of bounded geometry.

Then for δ2 > 0 small enough and any 0 < δ1 ≤ δ2, M has a countable cover
{
B(xi ;δ1)

}
i≥1 such that

i. ∀ i 6= j : d(xi , x j ) ≥ δ1;

ii. there exists an explicit global bound K such that for each x ∈ M the ball B(x;δ2) intersects at most K
of the B(xi ;δ2).

Note that the second result implies both that the cover is locally finite with fixed neighborhood size, and
that each set in the cover overlaps with at most K others, cf. Lebesgue covering dimension.

Proof. Using Proposition 2.5, choose δ> 0 such that Euclidean distance in normal coordinates on each
B(x;δ) is C = 2 equivalent to the metric distance and set δ2 ≤ δ/3.

Let {Mk }k∈N be a compact exhaustion of M . Cover Mk with a sequence of balls B(xi ;δ1), where
d(xi , x j ) ≥ δ1. This sequence is finite, because an infinite sequence {xi }i≥0 must have an accumu-
lation point in Mk , which contradicts d(xi , x j ) ≥ δ1. Choosing the first xi ’s in Mk+1 to coincide
with those of Mk , it follows that the union of all balls B(xi ,δ1) is a countable cover of M such that
∀ i 6= j : d(xi , x j ) ≥ δ1.

Let x ∈ M arbitrary. Any ball B(xi ;δ2) that intersects B(x;δ2) must be completely contained in B(x;3δ2).
Each of these balls has an exclusive subset B(xi ;δ1/2), so in normal coordinates around x, each has
an exclusive volume of at least Vol

(
B(0;δ1/(2C ))

)
, while B(x;δ) has volume of at most Vol

(
B(0;C 3δ2)

)
.

With n = dim(M), this leads to the explicit upper bound

K ≤ (3C δ2)n

(δ1/(2C ))n =
(
24

δ2

δ1

)n
. (2.10)
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Thus, only finitely many can intersect B(x;δ2). These estimates are uniform and do not depend on
x ∈ M so the bound K is global.

Lemma 2.17 (Uniform partition of unity).
Let M be a manifold with a uniformly locally finite cover with δ1 < δ2 and δ2 sufficiently small, as per
Lemma 2.16.

Then there exists a partition of unity by functions χ• ∈C k
b,u(B(xi ;δ2); [0,1]) subordinate to this cover.

We shall also apply this lemma to submanifolds which have a uniformly locally finite cover due to
Corollary 2.26 on page 44.

Proof. Let δ2 be small enough that by Lemma 2.6 coordinate transition maps are C k
b,u . Define a standard

radially symmetric smooth bump function ϕ ∈C∞(Rn ; [0,1]) that is identically one on B(0;δ1) and has
compact support in B(0;δ2), henceϕ ∈C k

b,u . We setϕi =ϕ◦exp−1
xi

by isometric identification Txi M ∼=Rn

and zero outside B(xi ;δ2). We have ϕ• ∈C k
b,u in any coordinate patch. Define in the usual way

χi =ϕi
/ ∑

n≥1
ϕn . (2.11)

The sum is finite as at most K of the B(xn ;δ2) overlap any B(xi ;δ2). The balls B(xi ;δ1) already cover M ,
so the denominator is at least one, from which it follows that χ• ∈C k

b,u .

Corollary 2.18. Similar to a uniform partition of unity, we can construct a partition by functions χ• ∈
C k

b,u(B(xi ;δ2); [0,1]) whose squares sum to one.

In the proof of Lemma 2.17 we simply replace (2.11) by

χi =ϕi
/ √ ∑

n≥1
ϕ2

n . (2.12)

2.2 Curvature and holonomy

To prove smoothness of the persistent manifold in Section 3.7, we shall want to estimate the holonomy
along closed loops to be close to the identity, that is, if c is a closed loop, then we want Π(c)−1 to be
small. To this end, we relate the holonomy to the curvature and finally obtain an estimate in terms of a
global bound on the curvature and the area of a surface enclosed by c.

The result that curvature is the generator of holonomy dates back at least to Ambrose and Singer [AS53]
who formulated this in differential form in the 1950’s; they cite an even older statement (without proof)
by Élie Cartan [Car26]. More recent work by Reckziegel and Wilhelmus [RW06] shows explicit integral
formulas for this relation, formulated on fiber bundles, a context far more general than is required here.
We shall present a formulation for Riemannian manifolds (M , g ).

Let Π denote the parallel transport functional, which takes C 1 curves to orthogonal maps between the
tangent spaces at their endpoints, see (F.3). If c is a closed loop, then Π(c) is a linear endomorphism on
Tc(0)M and we can measure ‖Π(c)−1‖. Our goal is to bound this quantity by the integral of the curvature
form R over a surface with boundary precisely c . This result can be viewed as a generalization of Stokes’
theorem where the curvature is the exterior derivative of the connection form ω, while the connection
on the other hand generates parallel transport along the boundary of the surface A that the curvature is
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integrated over. Note though, that we actually have R = dω+ω∧ω, so there is an additional term due to
the noncommutativity of the connection form.

Let

γ : D = [0, t ]× [0, s] → M : (t , s) 7→ γ(t , s) (2.13)

parametrize the surface A = γ(D) ⊂ M . The idea is that γ is the homotopy of a (closed) curve c. We
shall only consider parallel transport along horizontal or vertical lines in D; let us denote by Πs2,s1

t

parallel transport along s 7→ γ(s, t ) with s ∈ [s1, s2] and by Πs
t2,t1

parallel transport along t 7→ γ(s, t ) with
t ∈ [t1, t2].

We shall calculate the holonomy along ∂A with respect to a chosen frame on the pullback bundle
γ∗(TM). The final result will turn out to be independent of this choice, hence it is covariantly defined.
Let f be an orthonormal frame on γ∗(TM), that is, ft ,s : Tγ(t ,s)M →Rn is an isometry of inner product
spaces. The Levi-Civita connection ∇ on M can be pulled back to the connection γ∗(∇) on γ∗(TM) and
it can be expressed in terms of the connection formω ∈Ω1

(
D ;End(Rn)

)
with respect to the frame f . The

curvature of γ∗(∇) is equal to the curvature R of ∇ pulled back to D, so we have dω+ω∧ω= γ∗(R) f ,
where the subscript f indicates that everything is expressed with respect to the chosen frame. In the
same notation, parallel transport along a curve s 7→ c(s) satisfies the linear, homogeneous differential
equation3

d

ds f Π(c|s0) =−ω(ċ(s))◦ f Π(c|s0), f Π(c|00) =1Rn , (2.14)

which has a unique solution s 7→ f Π
s,0 = f Π(c|s0). This can be viewed as time-dependent flow in

End(Rn).

(t , s)

(t , s)

(0,0)

Figure 2.1: the path of the parallel transport term P (s) in D .

Let us define the parallel transport term

P (s) =Πs,s
t

◦Πs
0,t

◦Πs,0
0 : Tγ(0,0)M → Tγ(t ,s)M , (2.15)

see Figure 2.1. The holonomy defect can be expressed as

1−Π(∂A) =1−Π(∂D) =1−P (s)−1 ◦P (0) = P (s)−1 ◦ (
P (s)−P (0)

)
,

where Π(∂D) is defined using the pullback connection. We use the fundamental theorem of calculus to
write

P (s)−P (0) =
∫ s

0

dP (s)

ds
ds. (2.16)

3If the frame f is induced by local coordinates, then ω will precisely be given by the Christoffel symbols and we recover
equation (F.4).
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Expressing everything with respect to the frame f , we see that the first and last factor of P (s) are easily
differentiated using (2.14):

d

ds f Π
s,0
0 =−ω( ∂∂s )◦ f Π

s,0
0 and

d

ds f Π
s,s
t

= f Π
s,s
t

◦ω( ∂∂s ). (2.17)

The middle term f Π
s
t ,0

can be differentiated by viewing s as parameter in the differential equation (2.14).
Variation of constants yields (see e.g. [DK00, App. B] for a proof of the differentiable dependence of a
flow on parameters)

d

ds f Π
s
t ,t

=
∫ t

0
f Π

s
t ,t

◦ d

ds

[−ω( ∂∂t )
]◦ f Π

s
t ,0 dt

=
∫ t

0
− f Π

s
t ,t

◦
(
dω( ∂∂s , ∂∂t )+ d

dt

[
ω( ∂∂s )

]+ω(
[ ∂
∂s , ∂∂t

]
)
)
◦ f Π

s
t ,0 dt

using standard rules for exterior derivatives. Next we note that
[
∂
∂s , ∂

∂t

]= 0, and integrate by parts the
term d

dt

[
ω( ∂∂s )

]

=
∫ t

0
− f Π

s
t ,t

◦
(
−ω( ∂∂t )◦ω( ∂∂s )+dω( ∂∂s , ∂∂t )+ω( ∂∂s )◦ω( ∂∂t )

)
◦ f Π

s
t ,0 dt

−
[

f Π
s
t ,t

◦ω( ∂∂t )◦ f Π
s
t ,0

]t

t=0

=
∫ t

0
f Π

s
t ,t

◦ (dω+ω∧ω)
( ∂
∂t , ∂∂s

)◦ f Π
s
t ,0 dt −ω( ∂∂s )◦ f Π

s
t ,0

+ f Π
s
t ,0

◦ω( ∂∂s ). (2.18)

We see that this variation depends on the curvature form γ∗(R) f = dω+ω∧ω along the path and two
additional boundary terms. If we view γ as a homotopy of paths with homotopy parameter s and we
keep the path endpoints γ(0, s) and γ(t , s) fixed for all s ∈ [0, s], then these boundary terms vanish and
the result (2.18) agrees with [RW06, Cor. 3].

Instead, we insert (2.17) and (2.18) into (2.16). Then these boundary terms cancel against the terms
from (2.17) and we finally obtain

P (s) f −P (0) f =
∫ s

0

∫ t

0
f Π

s,s
t

◦ f Π
s
t ,t

◦γ∗(R) f ( ∂∂t , ∂∂s )◦ f Π
s
t ,0 ◦ f Π

s,0
0 dt ds

=
(∫

D
Πs,s

t
◦Πs

t ,t
◦γ∗(R)◦Πs

t ,0 ◦Πs,0
0

)
f

.
(2.19)

The integrand on the last line is a two-form on D with values in L(Tγ(0,0)M ;Tγ(t ,s)M). This final ex-
pression is clearly independent of a choice of frame, so we have recovered an explicit integral formula
relating holonomy along a null-homotopic loop to the curvature.

We conclude from (2.19) that if c is a closed, null-homotopic loop, and the curvature globally bounded,
then ‖Π(c)−1‖ can be estimated by ‖R‖sup times the surface area of any null-homotopy γ of c. Note
that we do not require γ to be an embedding; the integral is intrinsically defined on D by pullback.
Furthermore, γ is required to be C 1 only. This follows from the fact that both sides of the equation are
continuous with respect to γ in C 1-norm; alternatively, an explicit calculation requires that the mixed

partial derivative ∂2γ
∂s ∂t is continuous to perform integration by parts. Both lead to the to the following

result.
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Lemma 2.19 (Exponential growth bound on holonomy).
Let (M , g ) be a manifold of bounded geometry with normal coordinate radius δ that is M-small as in
Definition 2.8. Fix T > 0 and ρ > 0 and let x1, x2 be two C 1 curves on M with derivatives bounded by N
such that dρ(x1, x2)eρT ≤ δ< rinj(M). Denote by γt the unique shortest geodesic connecting x1(t ) to x2(t )
for any t ∈ [0,T ].

If δ is sufficiently small, then the closed loop η= x2|0T ◦γT ◦x1|T0 ◦γ−1
0 satisfies the holonomy bound

‖Π(η)−1‖ ≤ C̃ ‖R‖0 N dρ(x1, x2)
eρT

ρ
(2.20)

where C̃ depends on the geometry of M only.

Proof. The two-parameter family (s, t ) 7→ γt (s) defines a null-homotopy of the closed loop η. The map
s 7→ γt (s) is defined through the exponential map as

γt : [0,1] → M : s 7→ expx1(t )

(
s exp−1

x1(t )(x2(t ))
)
.

Since expx is a local diffeomorphism at least for d(x1(t ), x2(t )) < δeρ t < rinj(M), that depends smoothly
on x, it follows that (s, t ) 7→ γt (s) defines a homotopy between the curves x1, x2 restricted to the interval

[0,T ]. The map γt (s) has continuous mixed derivatives with respect to s, t (even though the double
derivative with respect to t does not exist since x1, x2 ∈ C 1 only), so integration by parts is allowed
in (2.18).

We estimate the surface area mapped by γt (s). We use shorthand notation ξ= s exp−1
x1(t )(x2(t )) ∈ Tx1(t )M

and denote by Dx expx the derivative of the exponential map with respect to the base point parameter x.
Then

d

ds
γt (s) = Dexpx1(t )(ξ) ·exp−1

x1(t )(x2(t )),

d

dt
γt (s) = Dx expx1(t )(ξ) · ẋ1(t )

+Dexpx1(t )(ξ) · [s Dx (exp−1
x1(t ))(x2(t )) · ẋ1(t )+ s Dexp−1

x1(t )(x2(t )) · ẋ2(t )
]
.

Since M has bounded geometry, Dexpx and its inverse are bounded by Theorem 2.4, while Dx expx and
its inverse are bounded by Lemma 2.6, say by C > 1. This leads to estimates∥∥∥ d

ds
γt (s)

∥∥∥≤C d(x1(t ), x2(t )),∥∥∥ d

dt
γt (s)

∥∥∥≤C ‖ẋ1(t )‖+C s
[
C ‖ẋ1(t )‖+C ‖ẋ2(t )‖]≤ 3C 2 N ,

so the holonomy bound satisfies

‖Π(η)−1‖ ≤ ‖R‖0

∫ 1

0

∫ T

0

∥∥∥ d

ds
γt (s)

∥∥∥∥∥∥ d

dt
γt (s)

∥∥∥ dt ds

≤ ‖R‖0

∫ T

0
3C 3 N dρ(x1, x2)eρ t dt

≤ 3C 3 ‖R‖0 N dρ(x1, x2)
eρT

ρ
.

Remark 2.20. It should be possible to obtain C̃ = 1 if the curves xi are generated by a flow Φ and
we choose as homotopy (s, t) 7→Φt (γ(s)), where γ is the geodesic connecting x1(0) and x2(0). In our
applications, though, the curves x1, x2 need not be solutions to exactly the same flow, while the current
result is sufficient for our purposes. ♦
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2.3 Submanifolds and tubular neighborhoods

From this section on, we shall prove results that—although they may be of interest independently within
bounded geometry—are building up towards the final section of this chapter, where we prove how to
reduce Theorem 3.1 on persistence in general manifolds of bounded geometry to the setting of a trivial
bundle. These results form the more technical part of this chapter and are not required elsewhere.

In the following, we assume that (Q, g ) is an ambient manifold that has bounded geometry of large or
infinite order and M ∈C k will denote a submanifold of Q. Only a finite order l > k of bounded geometry
is required of (Q, g ), but for simplicity we shall assume l =∞. Recovering the explicit additional order
l−k would amount to tediously tracking the details throughout all the proofs; it should be sufficient if l
is larger than k by some number between 2 and 10.

Let ι : M → Q be a C 1 immersion. With abuse of notation we denote by Tx M = Im(Dι(x)) and Nx =
Im(Dι(x))⊥ the tangent and normal spaces of M with respect to the immersion. Note that even if ι is not
injective, the original point x ∈ M uniquely selects the tangent and normal spaces in Tι(x)Q.

Definition 2.21 (Uniformly immersed submanifold).
Let ι : M → Q be a C k≥1 immersion of M into the Riemannian manifold (Q, g ) of bounded geometry.
Denote by Mx,δ the image under ι of the connected component of x in ι−1

(
B(ι(x);δ)∩ ι(M)

)
. We define M

to be a C k
b,u immersed submanifold when there exists a δ > 0 such that for all x ∈ M, the connected

component Mx,δ is represented in normal coordinates on B(ι(x);δ) ⊂ Q by the graph of a function
hx : Tx M → Nx and the family of functions h• ∈C k

b,u(T•M ; N•) has uniform continuity and boundedness

estimates independent of x. We define C k≥1
b immersions in a similar way.

Remark 2.22. By taking the connected component Mx,δ in M , we allow for immersed submanifolds
that intersect, or nearly intersect themselves. See Figure 2.2 on the left: Mx,δ is described by the graph
of hx , while on the right side, a different part of M embeds into this same neighborhood B(ι(x);δ). See
Figure 3.2 on page 70 for an example of a nearly self-intersecting submanifold. If we want to rule out
such cases, we can assume that Mx,δ is the unique component of M ∩B(ι(x);δ). This will turn M into an
embedded submanifold, but more strongly, the nearly self-intersecting case is also ruled out. We will
refer to this as a uniformly embedded submanifold.

Nx

Tx M
0ξ′

hx

B(0;δ)

x ′

Nx

Tx M
0

x ′

Nx ′

Figure 2.2: an immersed submanifold represented by the graph of hx in normal coordinates. In the left figure,
another part of M intersects transversely on the right; the right figure contains an orbit of the geodesic flow along
a normal vector at x ′ ∼= ι(x ′).
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Remark 2.23. The sets Mx,δ play a similar role as ‘plaques’ in [HPS77, p. 72–73].

Remark 2.24. In case k = 1, boundedness is automatically implied by uniform continuity. This follows
from the representation in normal coordinates. We have Dhx (0) = 0, so by uniform continuity there
exists a δ> 0 such that ‖Dhx (ξ)‖ < ε= 1 when ‖ξ‖ < δ, hence Dhx is bounded. Put another way, there is
no intrinsic measure for the ‘size of the derivative or tangent’ of a submanifold. ♦

Note that the function hx is only defined on that part of the domain B(0;δ) ⊂ Tx M where its graph is
contained in B(0;δ) ⊂ Tι(x)Q, as can be seen in Figure 2.2. In the splitting Tι(x)Q = Tx M ⊕Nx , we denote
with p1, p2 orthogonal projections onto the Tx M and Nx subspaces, respectively.

From now on we shall continually assume that M ∈C k≥1
b,u is a uniformly immersed submanifold of Q.

We will often identify M with its image ι(M) ⊂Q, as well as identify points x ∈ M with ι(x), keeping in
mind the definition of Mx,δ to track local injectivity. Furthermore, denote by dM the distance on M
induced by the pulled back Riemannian metric ι∗(g ). This distance function measures whether points
are close when viewed along the domain of the immersion, disallowing ‘shortcuts’ through Q. It also
distinguishes different points with the same immersion image. Note that it is different from the distance
d on Q pulled back to M . This we denote by dQ = ι∗(d) but it is not a distance on M when ι is not
injective. Still, we have the following local result, which will be useful for later estimates.

Lemma 2.25 (Local equivalence of distance).
Let M ∈C 1

b,u be a uniformly immersed submanifold of the bounded geometry manifold (Q, g ). Then dQ

and dM are locally equivalent in the following sense:

i. ∀x1, x2 ∈ M : dQ (x1, x2) ≤ dM (x1, x2);

ii. for any C ′ > 1 there exists a δ > 0 such that for all dM (x1, x2) < δ, we have the local converse
dM (x1, x2) ≤C ′ dQ (x1, x2).

Proof. The first assertion follows directly from the fact that any path in M induces a path of equal length
in Q via the immersion ι.

For the second part, we first note that if δ is small enough and dM (x1, x2) < δ, then we must have
x2 ∈ Mx1,δ. If this would not be the case, then any path γ connecting x1, x2 through M cannot be
contained in Mx1,δ. But this implies that the path runs out of B(x1;δ), so its length is greater than δ. This
contradicts the assumption that dM (x1, x2) < δ. Hence, x2 can be represented as a point on the graph of
hx1 in B(x1;δ).

Let C > 1, ε> 0 be constants to be fixed later and let δ be small enough such that the metric coefficients
are bounded by C in normal coordinate charts, that Proposition 2.5 holds with C , and we have ‖h•‖1 ≤ ε
as in Remark 2.24. We consider the normal coordinate chart on B(x1;δ) and construct a path in M to
find an upper bound for dM (x1, x2). Let x2 = (ξ,hx1 (ξ)) and define γ(t) = (t ξ,hx1 (t ξ)) for t ∈ [0,1]. We
estimate the length of γ as

l (γ) ≤
∫ 1

0

√‖g‖
√

1+‖h•‖2
1 ‖ξ‖ dt ≤

p
C

√
1+ε2 ‖ξ‖,

while the Euclidean norm can be estimated by the distance in Q as

‖ξ‖ ≤ ‖(ξ,hx1 (ξ))‖ ≤C d(x1, x2).

We conclude that
dM (x1, x2) ≤ l (γ) ≤C 3/2

√
1+ε2 dQ (x1, x2)

and for any C ′ > 1 we can find C > 1, ε> 0 such that C 3/2
p

1+ε2 <C ′.
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A uniform submanifold of a bounded geometry manifold can be shown to possess a uniformly locally
finite cover as a corollary of Lemma 2.16, without the need to show that the submanifold itself has
bounded geometry. As a consequence, it also has (square-sum) partitions of unity.

Corollary 2.26 (Uniform cover of a submanifold).
Let M ∈C 1

b,u be a uniformly immersed submanifold of the bounded geometry manifold (Q, g ).

Then for δ2 > 0 small enough and any δ1 ∈ (0,δ2], M has a uniformly locally finite cover by balls of radius
δ2 in terms of the distance dQ , such that the balls of radius δ1 already cover M. That is, there exist {xi }i≥1

such that
⋃

i≥1 Mxi ,δ1 covers M with a uniform bound K on the maximum number of sets Mxi ,δ2 covering
any set Mx,δ2 with x ∈ M.

Proof. The proof follows the ideas of Lemma 2.16. As an additional requirement, let δ> 0 be sufficiently
small such that each Mx,δ is represented in normal coordinates by the graph of hx . Under this assump-
tion, the open sets Mx,δ are induced by dQ and correspond to the connected component of x of the
preimage of B(ι(x);δ). Consequently, we can locally push the argument to ι(M) ⊂Q to conclude that
there is an upper bound K on the number of sets Mxi ,δ2 that intersect any set Mx,δ2 .

Even though we do not require submanifolds to have bounded geometry for the results in this section,
the lemma below will be needed in the final reduction to a trivial bundle. The essential idea of the proof
is to use Gauß’ second fundamental form to relate curvature of the submanifold to second derivatives
of its immersion map.

Lemma 2.27 (Submanifold of bounded geometry).
Let M ∈ C k≥2

b be a uniformly immersed submanifold of the bounded geometry manifold (Q, g ). Then
(M , ι∗(g )) is a Riemannian manifold with bounded geometry of order k −2.

Remark 2.28. We lose two orders of smoothness in the bounded geometry definition. This is due to
bounded geometry being defined in terms of the curvature, which depends on second order derivatives
of the metric, and in this case also on second order derivatives of the embedding through Gauß’ second
fundamental form. ♦

Proof. Let δ be sufficiently small such that for each x ∈ M we have the representation Mx,δ = Graph(hx )
with ‖Dhx‖ ≤ 1.

The Riemann curvature tensor RM of M can be expressed as a sum of the curvature R on Q and the
second fundamental form of the (local) embedding, see e.g. [Jos08, Thm. 3.6.2]:

g (RM (X ,Y ) Z ,W ) = g (R(X ,Y ) Z ,W )+ g (S(Y , Z ),S(X ,W ))

− g (S(Y ,W ),S(X , Z )),
(2.21)

where
S : TM ×TM → N : X ,Y 7→ (∇X Y )⊥ (2.22)

is the second fundamental form, and it is indeed pointwise defined. In normal coordinates we find

Sx (X ,Y ) = D2hx (0)(X ,Y ). (2.23)

Since h ∈ C k
b and g , g−1 ∈ C k

b as well, it follows that S ∈ C k−2
b and by (2.21) then that RM ∈ C k−2

b , so
condition (Bk−2) of Definition 2.1 is satisfied.

Condition (I) on the injectivity radius follows from an implicit function argument applied to the geodesic
flow using Theorem A.6. We consider local coordinates around x ∈ M by projecting the representation
M ∩B(x;δ) onto Tx M in normal coordinates in Q. That is, we have the coordinate chart map

κx : B(0;δ/2) ⊂ Tx M → M : ξ 7→ expx (ξ,hx (ξ))
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and the corresponding embedding into normal coordinates Tx M ,→ TxQ : ξ 7→ (ξ,hx (ξ)) of Q. We
calculate explicit estimates for the exponential map expM

x using Christoffel symbols of the connection
∇M on M in the coordinates in chart κx .

Let X ,Y be vector fields on M . Their representation in κx is mapped to normal coordinates B(x;δ) on Q
as

X (ξ) 7→ X̃ (ξ) = (
1,Dhx (ξ)

)T ·X (ξ).

Hence, from the covariant derivative on M in normal coordinates B(x;δ) ⊂ Q we can recover the
Christoffel symbols in local coordinates κx as

∇M
X Y = p1 ◦

[
X i (ξ)

∂

∂ξi
Y (ξ)+Γ(ξ,hx (ξ))

(
X̃ (ξ), Ỹ (ξ)

)]
,

where the first term has reduced to derivatives with respect to ξ ∈ Tx M ⊂ TxQ only, and Γ : B(x;δ) →
L2(TxQ;TxQ) are the Christoffel symbols in normal coordinates at x ∈Q. Thus, the Christoffel symbols

ΓM (ξ)(X ,Y ) = p1 ◦Γ(ξ,hx (ξ))
(
X̃ , Ỹ

)
(2.24)

of M in κx coordinates are uniformly bounded on sufficiently small balls B(0;δ′) ⊂ Tx M . The Euclidean
geodesic flow at time one defines the (trivial) Euclidean exponential map, which is an isomorphic
diffeomorphism (with infinite injectivity radius actually). Since we study a small perturbation of this
flow in local coordinates, given by the additional term (2.24), and the perturbation is at least C k−1

b and C 1

small, the perturbed geodesic flow of M can be made close enough that expM
x is still a diffeomorphism

on B(0;δ′) for some δ′ > 0. Hence, rinj(x) ≥ δ′, but these estimates depend only on the perturbation size,
so they hold uniformly for all x ∈ M .

To obtain the final result of this section, the tubular neighborhood theorem 2.33, we first need to work
out some details on local coordinates. If M is a submanifold of Q, it is natural to consider a specific
splitting on the normal coordinates at points x ∈ M , namely TxQ = Tx M ⊕Nx , where N is the normal
bundle over M . We shall require bounds, not just on coordinate transformations, but more specifically
bounds on how well this splitting is preserved. The lemmas are formulated in a more general context of
splittings of tangent spaces at any two nearby points, while the results for coordinates along M follow as
an easy corollary.

Lemma 2.29 (Coordinate transformations of splittings).
Let (Q, g ) be a smooth Riemannian manifold of bounded geometry, let C be sufficiently large and let
δ,ζ> 0 be sufficiently small. Let x1, x2 ∈Q and let Txi Q = Hi ⊕Vi , i = 1,2 be splittings along ‘horizontal’
and ‘vertical’ perpendicular subspaces with dim(H1) = dim(H2). Assume that d(x1, x2) < δ and that, for
i 6= j , Hi is represented in tangent normal coordinates at x j by the graph of Li ∈L(H j ;V j ) with ‖Li‖ ≤ ζ.

Then the coordinate transformation ϕ2,1 in Lemma 2.6 is of the form

ϕ2,1 =OH ⊕OV + ϕ̃2,1 with ‖ϕ̃2,1‖k ≤C
(
ζ+d(x1, x2)

)
, (2.25)

where OH ,OV are orthogonal transformations between the Hi and Vi with i = 1,2, respectively.

We first prove the following result and use it to prove Lemma 2.29.

Lemma 2.30 (Approximation of orthogonal maps).
Let V be a finite-dimensional inner product space and define the map

f : L(V ) → Sym(V ) : A 7→ AT A−1. (2.26)
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There exists an ε> 0 and a tubular neighborhood B(O(V );η) ⊂GL(V ) with fiber projection π, such that
on {A ∈ GL(V ) | ‖ f (A)‖ < ε,‖A‖ ≤ 2}, the map ϕ : A 7→ (π(A), f (A)) is a smooth diffeomorphism. As a
direct corollary, if ‖ f (A)‖ < ε and ‖A‖ ≤ 2 then U =π(A) ∈O(V ) is an orthogonal approximation of A in
the sense that ‖U − A‖ ≤ ‖ f (A)‖.

Proof. The map f is smooth and invariant under the left action of the orthogonal maps O(V ), while
O(V ) = ker( f ). Since GL(V ) is a Lie group, we have the canonical trivialization TGL(V ) =GL(V )× g l (V )
by left multiplication. The similar trivialization TO(V ) =O(V )×o(V ) can be viewed as a subbundle of

O(V )×o(V )⊕Sym(V ) = TGL(V )|O(V ),

where o(V ) is identified with the skew-symmetric linear maps. We restrict the exponential map
exp: TGL(V ) → GL(V ) to O(V )×Sym(V ). At 1 ∈ O(V ) this restriction has bijective derivative, hence
it is a local diffeomorphism. Since exp is O(V )-invariant, it defines a diffeomorphism onto a tubular
neighborhood B(O(V );η) ⊂GL(V ) of O(V ) of size η> 0 and a corresponding smooth fiber projection
map π : B(O(V );η) →O(V ).

Now D f (1) : a 7→ aT +a has image precisely Sym(V ). Thus, if we restrict f to the fiber over 1 ∈O(V ) in
the tubular neighborhood, then D f (1)|Sym(V ) = 2 and f is a diffeomorphism with ‖D f −1‖ ≤ 1 in some
neighborhood of 0 ∈π−1(1); if necessary, we reduce η> 0 for ‖D f −1‖ ≤ 1 to hold on B(O(V );η)∩π−1(1).
By O(V ) invariance of f , this holds globally on all (fibers) of the tubular neighborhood. Since, Dπ and
D f have complementary image at O(V ), ϕ= (π, f ) is a diffeomorphism on B(O(V );η).

The set B(0;2) \ B(O(V );η) ⊂ L(V ) is compact, so ‖ f ( ·)‖ attains its nonzero minimum on it. Let ε be
smaller than this minimum. Then, if ‖ f (A)‖ < ε, we must have A ∈ B(O(V );η) and hence A = exp(U , a)
for a unique (U , a) ∈O(V )×Sym(V ). By O(V )-invariance, we can assume w.l.o.g. that U = 1 and use the
mean value theorem to estimate

‖A−1‖ ≤ ‖D f −1‖‖ f (A)− f (1)‖ ≤ ‖ f (A)‖ < ε.

In other words, when A is sufficiently close to being orthogonal, measured according to f , then it is
close to an orthogonal map U in operator norm.

Proof of Lemma 2.29. Extending the results of Lemma 2.6, let

O =Π(γ2,1) : Tx1Q → Tx2Q

denote the orthogonal linear map induced by parallel transport. We decompose ϕ2,1 =O + ϕ̂2,1, where
ϕ̂2,1 can be made arbitrarily small. Moreover, we write

O =
(

A B
C D

)
∈L(H1 ⊕V1; H2 ⊕V2),

with the idea that B ,C should be small and A,D should approximate orthogonal maps OH ,OV , respec-
tively. Orthogonality of O implies

1=OT O =
(

AT C T

B T DT

)
·
(

A B
C D

)
=

(
AT A+C T C AT B +C T D
B T A+DT C B T B +DT D

)
.

For the operator norm we have ‖A‖,‖B‖,‖C‖,‖D‖ ≤ ‖O‖ = 1, so if we assume for the moment that B ,C
can be made sufficiently small, then, by writing AT A−1=−C T C and DT D −1=−B T B , Lemma 2.30
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implies that we can find OH ,OV such that

‖O −OH ⊕OV ‖ ≤
∥∥∥O −

(
A 0
0 D

)∥∥∥+∥∥∥(
A 0
0 D

)
−

(
OH 0

0 OV

)∥∥∥
≤ ‖B‖+‖C‖+‖A−OH‖+‖D −OV ‖
≤ ‖B‖+‖C‖+‖C T C‖+‖B T B‖.

(2.27)

In normal coordinates around x2 we have H1 = Graph(L), so C : H1 →V2 is represented by L in these
coordinates. The metric g is close to the identity in these coordinates, so C ∼= L can be assumed bounded
by 4ζ ≤ 1, as measured in the metric on Q. The same argument can be made for B T by considering
ϕ1,2 =ϕ−1

2,1, since

O−1 =OT =
(

AT C T

B T DT

)
.

We conclude that both ‖B‖,‖C‖ ≤ 4ζwhen δ is chosen small, hence O can be approximated by OH ⊕OV ,
and the error from (2.27) can be absorbed into ϕ̃2,1:

ϕ̃2,1 = ϕ̂2,1 + (O −OH ⊕OV ).

The errors introduced in ϕ̃2,1 from lemmas 2.6 and 2.30 are Lipschitz small in terms of d(x1, x2) and ζ,
respectively, so these add up to the estimate in (2.25).

Corollary 2.31. Let M ∈C k≥1
b,u be a uniformly immersed submanifold of a smooth Riemannian manifold

(Q, g ) of bounded geometry. Let x1, x2 ∈ M and let Txi Q = Txi M ⊕Nxi , i = 1,2, be the respective splittings
in horizontal and vertical directions. Then the results of Lemma 2.29 hold for dM (x1, x2) < δ. If moreover
M ∈C 2

b , then we have a Lipschitz estimate ‖Dϕ̃2,1(0)‖ ≤C d(x1, x2).

Proof. This follows immediately from the local representation Mx2,δ = Graph(h2) as Tx1 M is represented
in tangent normal coordinates at x2 by L = Dh2(ξ), where x1 = (ξ,h2(ξ)). And Dh2(ξ) becomes small
when δ is small. The same holds with x1, x2 interchanged.

If M ∈ C 2
b , then we can estimate ‖Dh•(ξ)‖ ≤ ‖D2h•‖‖ξ‖ ≤ C d(x1, x2). Hence, the Lipschitz result in

Lemma 2.29 transforms into a Lipschitz estimate in d(x1, x2) only.

Below we define when a mapping is approximately isometric, see for example also [Att94, p. 505].
The Lyapunov exponents of a dynamical system are preserved under these quasi-isometries since the
exponential growth dominates any bounded factors when measuring sizes. This property is required
when we transfer a noncompact normally hyperbolic system to a different space and want normal
hyperbolicity to be preserved.

Definition 2.32 (quasi-isometry).
Let M , N be manifolds with distance metrics dM ,dN and let ϕ : M → N be a diffeomorphism. We call ϕ a
C -quasi-isometry with C > 1, if

∀x, y ∈ M : C−1 dM (x, y) ≤ dN (ϕ(x),ϕ(y)) ≤C dM (x, y). (2.28)

We simply call ϕ a quasi-isometry if there exists an unspecified C > 1.

We conclude this section with a version of the tubular neighborhood theorem that is appropriate in the
bounded geometry setting.
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Theorem 2.33 (Uniform tubular neighborhood).
Let M ∈ C k≥2

b be a uniformly immersed submanifold of the bounded geometry manifold (Q, g ). Then
for η > 0 sufficiently small (but depending explicitly on M and Q), the η-sized tubular neighborhood
B(M ;η) = {y ∈Q | d(y, M) ≤ η} can be represented on the η-sized normal bundle N≤η of M by a diffeomor-
phism ϕ, locally on each N≤η|Mx,δ and we have ϕ,ϕ−1 ∈C k−1

b,u (hence ϕ is a quasi-isometry).

When moreover M is uniformly embedded, i.e. Mx,δ = M ∩B(x;δ) for each x ∈ M as in Remark 2.22, then
ϕ is a global diffeomorphism.

In case M is compact, the standard proof uses the fact that the exponential map has bijective differential
at the zero section, and then by compactness it must be a diffeomorphism on a uniform neighborhood
N≤η of the zero section. Here, to get a uniform neighborhood N≤η on which ϕ= exp |N≤η is a diffeomor-
phism, we require bounds on second order derivatives (that is curvature, cf. Lemma 2.27) of M so that it
has curvature radius r bounded from below, hence cut locus points can only occur at least at distance r
away from M , making ϕ injective for η< r . See Figure 2.2 for a representation of a submanifold M in
normal coordinates around x and a ray of the normal bundle at a nearby point x ′.

Note that for an immersed submanifold, we define the normal bundle as

N = {
(x,ν) ∈ M ×TQ

∣∣ ι(x) =π(ν), ν⊥ Im
(
Dι(x)

)}
. (2.29)

This can again be viewed as immersed into TQ.

Proof. We set ϕ= exp |N and in the following we will implicitly apply Theorem 2.4 and Proposition 2.5
to choose 0 < δ≤ 1 small enough such that the metric g up to its second order derivatives is bounded,
as well as that the Christoffel symbols are bounded. Also, we choose δ such that M is uniformly locally
representable by graphs according to Definition 2.21. We will in sequence prove local and global
injectivity, surjectivity of ϕ and finally that ϕ,ϕ−1 ∈C k−1

b,u .

We claim that for some η > 0, ϕ is locally injective on N≤η, the normal bundle restricted to size η.
Let ν, ν′ ∈ N be such that ϕ(ν) = ϕ(ν′) and denote by x = π(ν), x ′ = π(ν′) their base points in M . We
consider normal coordinates at x, hence we have ν = (0,σ2) for some σ2 ∈ Nx , while ν′ is given by
(σ′

1,σ′
2) ∈ Tx M ⊕ Nx . From Corollary 2.31 it follows for small δ that ν′ is nearly mapped onto Nx in

normal coordinates at x. Since M ∈ C 2
b , the deviation from mapping onto Nx is Lipschitz small in

d(x ′, x) ∼= ‖ξ‖, so we have
‖σ′

1‖ ≤C ‖ξ‖‖σ′
2‖. (2.30)

Now, ϕ(ν′) = ϕ(ν) can only hold if the respective horizontal coordinates along Tx M are equal. By
definition of normal coordinates around x, we have exp(ν) = (0,σ2). Therefore it is sufficient to prove
that some η> 0 exists as a lower bound for

{‖ν′‖ ∈R |ϕ(ν′)1 = 0,π(ν′) 6= x}.

We view the exponential map as the time-one geodesic flow, which is given in local coordinates by (2.5).
The geodesic flow along ν′ = (σ′

1,σ′
2) starting at (ξ′,h(ξ′)) is a small perturbation of the flow along (0,σ′

2)
starting at (0,0). The latter has solution curve t 7→ (0, t σ′

2) ∈ Tx M ⊕Nx .

By Theorem 2.4 we arrange for ‖g −1‖,‖Γ‖ ≤ 2 and ‖DΓ‖ ≤C in local coordinates. We have estimates

‖Γ(x ′(t ))−Γ(x(t ))‖ ≤ ‖DΓ‖‖x ′(t )−x(t )‖ ≤C ‖x ′(t )−x(t )‖,

‖σ′(t )‖ ≤
√

g (σ′(t ),σ′(t )) =
√

g (σ′(0),σ′(0)) ≤p
2‖σ′(0)‖.



2.3. SUBMANIFOLDS AND TUBULAR NEIGHBORHOODS 49

With these, we obtain the Gronwall-like estimates

d

dt
‖x ′(t )− (0, t σ′

2)‖ ≤ ‖σ′(t )− (0,σ′
2)‖,

d

dt
‖σ′(t )− (0,σ′

2)‖ ≤ ‖DΓ‖‖x ′(t )− (0, t σ′
2)‖‖σ′(t )‖2

+‖Γ‖(‖σ′(t )‖+‖(0,σ′
2)‖)‖σ′(t )− (0,σ′

2)‖
≤ (

4C η2 +4
p

2η
)‖σ′(t )− (0,σ′

2)‖,

for which Gronwall’s inequality yields

‖σ′(t )− (0,σ′
2)‖ ≤ ‖(σ′

1(0),0)‖eC̃ η t .

Now, if η is chosen sufficiently small, then using (2.30), we have for all 0 ≤ t ≤ 1 that

‖x ′
1(t )−x1(0)‖ ≤

∫ t

0
C ‖ξ′‖ηeC̃ η t dτ≤ 1

2
‖ξ′‖.

This shows that there exists an explicit η> 0 such that ϕ is injective on N≤η restricted to a neighborhood
Mx,δ, and by construction this η is uniform over M . Later modifications to choose η smaller will only
depend on the global geometry of Q, but not on any details of M .

If moreover Mx,δ = M ∩B(x;δ) is the unique connected component of M in each normal coordinate
chart, then ϕ is injective globally on N≤η. This follows easily by taking η< δ

2 . Then, any ν′ and ν that
have the same image, must have base points x ′, x separated by a distance less than δ, as ϕ= exp will
only map onto points at most η away from the base point. Therefore, x ′ must lie in B(x;δ) and in M ,
hence on Graph(h) = Mx,δ. This case was already treated.

Finally, we will show that ϕ is surjective onto B(M ;η) when η < rinj(Q). Take y ∈ B(M ;η), then M ∩
B(y ;rinj(Q)) contains a nonempty compact set, so there exists an x ∈ M such that d(y, M) = d(y, x). This
distance must be realized by a (unique) geodesic γ. We will derive a contradiction if γ′(0) 6∈ Nx , by
showing that then the minimum distance is not attained at x. Let (ξ1,ξ2) ∈ Tx M ⊕Nx be the normalized
tangent vector of γ′(0). By assumption we have ξ1 6= 0, so ‖ξ2‖ < 1. We parametrize

γ :
[
0,d(y, x)

]→ TxQ : t 7→ t (ξ1,ξ2)

by arc length in normal coordinates, thus d(x,γ(t)) = t . Consider the Euclidean distance in normal
coordinates at x of γ(t ) to its vertical projection onto M = Graph(h). This shows that

dE (γ(t ), M) ≤ ‖t ξ2 −h(t ξ1)‖ ≤ t ‖ξ2‖+o(t ‖ξ1‖)

as Dh(0) = 0 and h ∈C 2
b . The Euclidean distance is C -equivalent to the g -induced distance, so we have

lim
t↓0

d(γ(t ), M)

d(x,γ(t ))
≤ lim

t↓0
C ‖ξ2‖+o(t )/t =C ‖ξ2‖.

By assumption ‖ξ2‖ < 1, so we can restrict to a small enough neighborhood B(x;δ) such that 1 <C <
‖ξ2‖−1 and conclude that d(γ(t), M) < d(x,γ(t)) for some t > 0, which shows that a shorter (broken)
geodesic from y to M exists. This completes the contradiction and proves that ϕ is surjective.

Finally, ϕ ∈ C k−1
b,u follows directly from the fact that it is the restriction of the exponential map to

N≤η ∈C k−1 and in induced normal coordinate charts, we have exp ∈C k−1
b,u . For ϕ−1 we use a formula

and arguments similar to (A.2), showing that if Dϕ−1 is uniformly bounded, then ϕ−1 ∈C k−1
b,u holds as

well. Now Dϕ= 1 in induced normal coordinates at M , so by uniform continuity, there exists some η> 0
such that Dϕ stays away from non-invertibility on N≤η, hence Dϕ−1 stays bounded. This automatically
implies that ϕ is a quasi-isometry with C = max(‖Dϕ‖,‖Dϕ−1‖).
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2.4 Smoothing of submanifolds

It is well-known, at least in the compact case, that r -normal hyperbolicity is a persistent property under
C 1 small perturbations of class C r , that is, the persisting manifold is again r -normally hyperbolic and
specifically C r , see [HPS77, Thm. 4.1] or [Fen72, Thm. 2]. In other words, r -normal hyperbolicity is
an ‘open property’ in the space of C r systems with C 1 topology. Therefore, it is natural to only assume
that the original manifold is C r , but not smoother. Even if we start out with an r -NHIM M ∈C∞, then
after a perturbation we will generally only have a manifold Mε ∈C r . We could, however, also have tried
to obtain this manifold Mε by first perturbing M to an intermediate manifold Mε/2 and then perturb
that manifold to Mε. When applying a persistence theorem in the second step, we can only assume the
initial manifold to be C r .

This restricted C r smoothness assumption forces us to be careful about the precise smoothness of each
and every object. For example, a vector field on a C r manifold can only be C r−1. This could probably
be overcome by considering discrete-time mappings instead of flows, but we need other smoothness
improvements as well. For example, we want to model the persisting manifold as a section of the normal
bundle N ∈C r−1 of the original manifold, which is not smooth enough. So here we need a smoothing
argument as well, cf. [Fen72, p. 205].

We solve these problems by constructing an approximate, smoothed manifold Mσ ∈C∞. This allows M
to be modeled as a small section of the normal bundle Nσ of Mσ, so the system in a neighborhood of M
can be transferred to Nσ while preserving smoothness and normal hyperbolicity properties. With this
construction we need not worry about smoothness in the proof, while the conclusions are preserved up
to C r smoothness. Uniform estimates must be preserved though, so standard methods for constructing
Mσ and Nσ do not readily apply or need a careful analysis.

First, we constructσ> 0 close approximations Mσ ∈C∞ to M by globalizing a local chart construction of
smoothing by convolution with a mollifier. Then we use the fact that Mσ has uniformly bounded ‘second-
order derivatives’ to show that for a sufficiently small σ> 0, Mσ has a normal bundle diffeomorphic to a
neighborhood B(M ;δ) ⊂Q of uniform size.

We recall some standard techniques on Rn , see for example [Hör03, p. 25]. Let ϕν ∈C∞
0 (Rn ;R≥0) be a

mollifier function, with support in B(0;ν) and integral normalized to one for any ν> 0. We also define a
generic cut-off function χα,β ∈C∞(R; [0,1]) such that

χα,β(x) =
{

1 if x ≤α,

0 if x ≥β.
(2.31)

Note that ϕν, χα,β ∈C k
b,u for any k ≥ 0, as they are constant outside compact sets.

Lemma 2.34 (Smoothing by convolution).
Let r, δr > 0, f ∈C k≥0

b,u

(
B(0;r +2δr ) ⊂Rm ;Rn

)
, and fix l > k and ε> 0. If the mollifier support radius ν> 0

is chosen sufficiently small, then f can be approximated by a function f̃ such that

i. f̃ = f outside B(0;r +δr );

ii. f̃ ∈C l
b,u ∩C∞ on B(0;r ) and wherever f ∈C l

b,u ∩C∞;

iii. ‖ f̃ − f ‖k ≤ ε;

iv. ‖ f̃ ‖l ≤C (ν, l )‖ f ‖0 on B(0;r ), for some C (ν, l ) > 0.
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Note that C (ν, l ) may grow unboundedly as ν→ 0 or l →∞.

Proof. A function that is C l+1
b is automatically C l

b,u , that is, uniformly continuous up to one degree less,

so we only need to prove f̃ ∈C l
b ∩C∞ for l shifted by one.

We construct f̃ by a combination of convolution and cut-off. Let χ̂(x) = χr,r+δr (‖x‖) for x ∈ Rm and
define

f̃ (x) = (1− χ̂(x)) f (x)+ χ̂(x)
∫
Rm

f (x − y)ϕν(y) dy. (2.32)

When ν< δr /2, this f̃ is smooth on B(0;r ) and equal to f outside B(0;r +δr ).

The convolution approximates f in C k -norm, as for any 0 ≤ j ≤ k and x ∈ B(0;r +δr )

‖D j (ϕν∗ f )(x)−D j f (x)‖ ≤
∫

B(0;ν)
‖D j f (x − y)−D j f (x)‖ϕν(y) dy ≤ εD j f (ν),

so by uniform continuity of f up to k-th derivatives, ν can be chosen small enough such that ‖(ϕν∗ f )−
f ‖k ≤ ε on B(0;r +δr ). The map x 7→ χ̂(x) is C k

b,u , so we can estimate for j ≤ k

‖D j f̃ (x)−D j f (x)‖ ≤
j∑

i=0

(
j

i

)
‖Di χ̂(x)‖ ·‖D j−i (ϕν∗ f − f

)
(x)‖ ≤C j ε(ν).

Hence, we can construct f̃ close enough to f in C k -norm by choosing ν small enough.

Uniform continuity of f̃ follows from uniform continuity of ϕν∗ f as χ̂ ∈C k
b,u on its compact support.

We find for 0 ≤ j ≤ k

‖D j (ϕν∗ f )(x2)−D j (ϕν∗ f )(x1)‖
≤

∫
B(0;ν)

‖D j f (x2 − y)−D j f (x1 − y)‖ϕ(y) dy ≤ εD j f (‖x2 −x1‖).

To estimate bounds for higher derivatives of f̃ within B(0;r ), we note that χ̂= 1 and let the derivatives
act on ϕν in the convolution: these are bounded on the compact domain of support, but bounds will
depend on the size ν and degree l , while ‖ f ‖0 can be factored out.

The smoothing technique in Lemma 2.34 is formulated for Euclidean space. To adapt it to manifolds in
a uniform setting, we need to have uniformly sized coordinate charts, as well as uniform behavior of the
function under these smoothing operations. We cannot simply use local coordinates and a partition of
unity, because the images on different charts cannot be glued together on the target manifold. Instead,
we will apply this smoothing operation sequentially on each coordinate chart in a cover. We require a
cover that is locally finite with a global upper bound K on the number of charts covering a point, so that
each point undergoes only a bounded number of smoothing operations and hence the final smoothed
manifold Mσ differs by a controllable amount from the original M .

When the graph representation of M in one chart is modified, we need control on how much the graph
is modified in overlapping charts. To this end, we extend Lemma 2.29 and Corollary 2.31.

Lemma 2.35 (Graph difference under coordinate transformations).
Let (Q, g ) be a smooth Riemannian manifold of bounded geometry. Let x1, x2 ∈Q and let Txi Q = Hi ⊕
Vi , i = 1,2 be splittings along horizontal and vertical perpendicular subspaces with dim(H1) = dim(H2).
Assume that d(x1, x2) < δ and that, for i 6= j , Hi is represented in normal coordinates at x j by the graph of
Li ∈L(H j ;V j ) with ‖Li‖ ≤ ζ.
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Let f1, g1 ∈C k≥1
b,u

(
B(0;δ) ⊂ H1;V1

)
with ‖ f1‖1,‖g1‖1 ≤ ε and ‖ f1‖k ,‖g1‖k ≤C .

When δ,ζ,ε > 0 are sufficiently small, then there exists a constant C̃ such that the graphs of f1, g1 are
(partially) represented by functions f2, g2 ∈ C k

b,u(H2;V2) and ‖ f2 − g2‖k ≤ C̃ ‖ f1 − g1‖k . This result is
uniform for all x1, x2 ∈Q.

Remark 2.36. The functions fi , gi may only be defined on parts of B(xi ;δ); all claims should thus be
read as only for those points where the respective functions are defined. ♦

Proof. Let (ξi ,ηi ) ∈ Hi ⊕Vi , i = 1,2 denote normal coordinates, decomposed in the split directions
at xi ∈ Q. By Lemma 2.29, transformations between these coordinates are of the form (2.25), where
‖ϕ̃2,1‖k+1 can be made uniformly small as δ,ζ→ 0.

We aim to apply the implicit function theorem to find a function f2 on B(x2;δ) whose graph corresponds
to that of a function f1 on B(x1;δ). We define

X = H1 ×V2, Y = H2 ×C k
b,u(H1;V1), Z = H2 ×V2, and

F : X ×Y → Z : (ξ1,η2), (ξ2, f1) 7→ϕ2,1(ξ1, f1(ξ1))− (ξ2,η2). (2.33)

Note that X and Z are isomorphic vector spaces, so we can apply the implicit function theorem with Y
as parameter space. Moreover, if we have two functions f1, f2 whose graphs represent the same manifold
on the intersection B(x1;δ)∩B(x2;δ), then we have

F
(
p1 ◦ϕ−1

2,1

(
ξ2, f2(ξ2)

)
, f2(ξ2),ξ2, f1

)= 0

for all ξ2 ∈ H2 where this is defined, so the implicit function

G(ξ2, f1) = (
p1 ◦ϕ−1

2,1(ξ2, f2(ξ2)), f2(ξ2)
)

encodes the representation f2. We verify the conditions of the implicit function theorem:

D1F
(
(ξ1,η2), (ξ2, f1)

)= (
OH +p1 ·Dϕ̃2,1 · (1+D f1) 0

OV ·D f1 1

)
is unitary when ϕ̃2,1 = f1 = 0. When δ, ε are sufficiently small, then these functions are still small enough
such that D1F is invertible with uniformly bounded inverse, using Lemma A.1. Furthermore, F ∈C k

b,u ,

as the dependence on ξ1,η2,ξ2 is clearly C k
b,u , while the omega Lemma [AMR88, p. 101] guarantees joint

C k
b,u-dependence on f1 as well. Note that compactness of the domain of f1 is not required, as we assume

these functions to be uniformly bounded and thus have compact image.

The implicit function theorem has a corresponding formulation as a uniform contraction principle. The
latter formulation shows that the implicit function G must be unique, while existence holds if ϕ̃2,1, f1,ξ2

are sufficiently close to zero, due to a priori estimates. We apply Corollary A.4 as an extension of the
implicit function theorem to conclude that G ∈C k

b,u . This means that f2 = p2 ◦G( · , f1) ∈C k
b,u on suitable

neighborhoods. Using formula (A.2) for DG , we can moreover conclude that f2 depends Lipschitz on f1.
This follows from explicit control on the boundedness and continuity estimates, while variation with
respect to f1 only introduces additional k+1-order derivatives of ϕ̃2,1, which can be assumed uniformly
bounded. Hence, there exists some constant C̃ such that ‖g2 − f2‖k ≤ C̃ ‖g1 − f1‖k and all estimates are
uniform.
Corollary 2.37 (Graph size under coordinate transformations).
Under the assumptions of Lemma 2.35, there exist constants A,B such that we have the estimate

‖ f2‖k ≤ A‖ f1‖k +B (2.34)

on amplification of the size of a graph under coordinate transformations.
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Proof. We choose g1 = 0 in Lemma 2.35 and set A = C̃ . There exists a uniform bound B such that
‖g2‖k ≤ B , and when ζ,ε are sufficiently small, then for δ′ = 9

10 δ we have B(0;δ′) ⊂ Dom(g2). Hence, we
easily deduce

‖ f2‖k ≤ ‖ f2 − g2‖k +‖g2‖k ≤ C̃ ‖ f1‖k +B

for all x ∈ B(0;δ′) where f1, f2 are defined.

Theorem 2.38 (Uniform smooth approximation of a submanifold).
Let M ∈C k≥1

b,u be a uniformly immersed submanifold of a smooth Riemannian manifold (Q, g ) of bounded
geometry.

Then for each σ> 0 and integer l ≥ k, there exists a uniformly immersed submanifold Mσ ∈C l
b,u ∩C∞

and δ> 0 such that ‖Mσ−M‖k ≤σ with respect to normal coordinate charts of radius δ along both M
and Mσ. If M is a uniformly embedded submanifold, then so is Mσ.

The proof relies on finding a (uniformly locally finite) cover of M and then in each chart make smooth
the graph representation h•. All estimates are uniform, independent of the point x ∈ M , hence so is
the final result. Smoothing is done sequentially in each chart, so we must be careful to check how
smoothing in one chart influences the graph representation in other charts. This makes the technical
estimates quite involved, but the basic idea is that we have uniform control on the size of changes in
each h• by the convolution kernel parameter ν in Lemma 2.34, as well as the size of this change in other
charts.

Proof. This proof contains a lot of interdependent size estimation parameters. Giving explicit choices
and dependencies would clutter the proof needlessly, so we make a few remarks on beforehand. Any
δ’s denote sizes of normal coordinate balls and ε’s are used for sizes of (changes in) functions in these
coordinates. The parameter ν from Lemma 2.34 depends on most of the foregoing, while only the C l

bound (but not the C k bound) of Mσ depends on the choice of ν. The various ε’s will be fixed later,
and depend on σ and global properties of M and (Q, g ), but not on δ’s. Also note that everything is
independent of points x ∈ M ,Q.

We fix 2δ1 = δ2 = 1
2 δ3, ε∞ = 2ε0, and C∞ =C0 +1 and choose δ3, ζ, ε∞, εϕ > 0 sufficiently small such

that all the following statements hold true.

i. By Proposition 2.5 and Lemma 2.25, distances and metrics are C = 2 equivalent on balls B(x;δ3),
and dQ , dM are locally equivalent, all up to order l +1.

ii. By assumption of M ∈ C k
b,u , we have for each x ∈ M the representation Mx,δ3 = graph(hx ) with

‖h•‖1 ≤ ε0 and ‖h•‖k ≤C0.

iii. By Corollary 2.26, there exists a uniformly locally finite cover
⋃

i≥1 Mxi ,δ2 of M with all xi separated
by at least δ1, the balls Mxi ,δ1 already covering M , and bound K on the maximum number of Mxi ,δ2

intersecting any Mx,δ2 . Formula (2.10) shows that K depends on the ratio δ2/δ1, but does not
increase when δ3 → 0.

iv. By Lemma 2.29, all coordinate transition maps ϕ2,1 between any x1, x2 ∈Q, d(x1, x2) < δ3 are C l

bounded. When the graph representations Hi = Graph(Li ) are bounded by ζ> 0, then these are
of the form ϕ2,1 = OH ⊕OV + ϕ̃2,1, with ‖ϕ̃2,1‖l+1 ≤ εϕ. And by Corollary 2.31, this holds for the
coordinate transformations between the xi chosen for the cover of M .

v. By Lemma 2.35, there exists a constant C̃ that estimates the graph change under coordinate transfor-
mations from the previous point, when ‖ f ‖1,‖g‖1 ≤ ε∞ and ‖ f ‖k ,‖g‖k ≤C∞, while Corollary 2.37
holds on balls of size δ′ = 9

10 δ3 > δ2.
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vi. If M was a uniformly embedded submanifold, then let Mx,δ3 be the unique connected component
of M in B(x;δ3) for each x ∈ M .

Let M j denote a modification of M after applying smoothing operations in the first j charts, and let
h j

i denote the graph representation of M j in chart i . So, initially we have M 0 = M and h0
i = hi . Note

that the sequence {h j
i } j≥1 is constant after some finite index j (i ), since it is changed at most K times by

smoothing in overlapping charts. Thus, the final graphs are given by h∞
i = h j (i )

i .

Initially, we have ‖h•‖1 ≤ ε0 and ‖h•‖k ≤C0, and we assume that throughout the sequential smoothings
it holds for all i , j that ‖h j

i ‖1 ≤ ε∞ and ‖h j
i ‖k ≤C∞, and therefore the final h∞

i satisfy these estimates as
well. Let ε0 be sufficiently small, such that by a mean value theorem estimate

‖h•(ξ)‖ = ‖h•(ξ)−h•(0)‖ ≤ ‖Dh•‖‖ξ‖ ≤ ε0 ‖ξ‖,

we have B(0;δ2) ⊂ Dom(h•).

We apply the convolution smoothing Lemma 2.34 with some choice r > δ1 and r + 2δr < δ2 to se-
quentially make smooth hi−1

i in the coordinate chart B(xi ;δ3) to obtain hi
i ∈C l

b,u ∩C∞ on B(0;r ). The

h j
• representations of the M j

x•,δ3
overlap, so we must be careful that (at most) K repeated smoothing

operations keep the h j
• within the bounds required to apply this lemma, while at the same time we must

ensure that each point on the sequence of manifolds M j is smoothed to C l
b,u at some stage, even though

M j changes to Mσ = M∞ throughout the sequential smoothings.

Let us first show that each point is smoothed. We can keep track of each original point x ∈ M as a
sequence of points x j ∈ M j throughout the smoothings, and once M j is smoothed around x j , then the
convolution lemma guarantees that smoothness is preserved around the sequence x j under further
smoothing in other charts. Let Φ : M ∼−→ Mσ denote the diffeomorphism that assigns to x ∈ M the
final point x∞ ∈ Mσ. Each point x ∈ M is element of a graph hi in at least one ball B(xi ;δ1), so if
the corresponding sequence of points x j ∈ M j moves less than r −δ1, then it is smoothed in B(xi ;r ).
Therefore, we choose ν in Lemma 2.34 small enough, such that

‖ f̃ − f ‖k ≤ ε(ν) < r −δ1

2K
.

The factor 2K accounts for at most K charts in which x j is moved and C = 2 to correct for equivalence
of distance in charts. Hence, the manifold is smoothed to C l

b,u ∩C∞ at each point.

Next, we show that each h j
i is defined at least on B(0;r +2δr ) and satisfies the bounds ε∞ and C∞.

Initially, we have ‖hi‖1 ≤ ε0, ‖hi‖k ≤ C0, and Graph(hi ) = Mxi ,δ3 is well-defined in B(xi ;δ3). So for
ε0 ≤ 1

10 , say, we must have ‖hi‖0 ≤ 1
10 δ3 and Dom(hi ) ⊃ B(0; 11

10δ2). The only reason that the domain

of some h j
i decreases is if either the graph moves outside of B(0;δ3) or the modified manifold cannot

be represented by a graph anymore. The latter cannot occur if Dh j
i stays bounded, while the former

can be controlled by bounding ‖h j
i ‖0. Both can be controlled by estimating the C 1 changes h j

i −h j−1
i .

First, in coordinate chart i = j we can directly use the convolution smoothing Lemma 2.34 to conclude
that ‖h j

i −h j−1
i ‖1 ≤ ε(ν). In any other chart i 6= j , this change is amplified by a bounded factor C̃ , as per

Lemma 2.35, so we have
‖h j

i −h j−1
i ‖1 ≤ C̃ ε(ν).

When we choose ν small enough that

K C̃ ε(ν) < min
(
ε0 , 1

10 δ3 ,1
)
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holds, then this leads to

‖h j
i ‖0 ≤ ‖hi‖0 +K C̃ ε(ν) ≤ 2

10
δ3,

‖h j
i ‖1 ≤ ε0 +ε0 = ε∞,

‖h j
i ‖k ≤ ‖hi‖k +K C̃ ε(ν) ≤C0 +1 =C∞.

This shows that indeed the assumed bounds ε∞ and C∞ hold, and that h j
i is defined at least on the ball

B(0;r +2δr ).

The sequential smoothings create and preserve C l
b,u ∩C∞ smoothness, while every ‘point’ x j ∈ M j is

touched by these operations. Moreover, Lemma 2.34 and Corollary 2.37 together guarantee that the
smoothing in each chart keeps

‖h j
i ‖l ≤ A‖h j−1

j ‖0 +B ≤ A C (ν, l )‖h j−1
j ‖0 +B ≤ A C (ν, l )ε∞+B

bounded with a uniform estimate, at least on charts B(xi ;δ2).

Finally, we want to estimate the sizes and distance between the graphs h•, h∞• in split coordinate charts
of radius δ= δ2−r along either M or Mσ. If x is a point either on M or Mσ, then it is contained in at least
one ball B(xi ;r ) and B(x;δ) ⊂ B(xi ;δ2). If we also set ε∞ ≤ ζ and consider the coordinate transformation
ϕ from normal coordinates at xi to x, then Lemma 2.35 and Corollary 2.37 hold and can be used to
estimate

‖h∞
x ‖l ≤ A‖h∞

i ‖l +B and ‖h∞
x −hx‖k ≤ C̃ ‖h∞

i −hi‖k ≤ C̃ 2 K ε(ν)

for all points in the domains of hx and h∞
x −hx within B(0;δ). So if we set C̃ 2 K ε(ν) < σ, then Mσ is

C k close to M in normal coordinate charts of radius δ along either M or Mσ, while at the same time
Mσ ∈C l

b,u ∩C∞.

If M is a uniformly embedded submanifold, then δ3 was chosen small enough such that Mx,δ3 is the
unique connected component of M in B(x;δ3) for any x ∈ M . We now show that the same holds for
Mσ with balls of radius δ. Let x̃ ∈ Mσ be arbitrary and x =Φ−1(x̃) ∈ M . We take ỹ ∈ Mσ∩B(x̃;δ) and
want to prove that ỹ ∈ (Mσ)x̃,δ. By the uniform estimates made before, both Mx,δ2 and (Mσ)x̃,δ2 can be
represented by graphs hx ,h∞

x respectively in coordinates B(0;δ2) ⊂ Tx M ⊕Nx . We have y =Φ−1(ỹ) ∈
B

(
x̃;δ+ (r −δ1)

)⊂ B
(
x;δ+2(r −δ1)

)
, so y ∈ B(x;δ2)∩M = Mx,δ2 = Graph(hx ).

By the construction of Mσ we have x ∈ B(xi ;r ) in some chart i , but also (Mσ)x,δ2 = Graph(hx ). Let
y ∈ B(x;δ)∩Mσ; we want to prove that y ∈ (Mσ)x,δ = Graph(h∞

x ). Since y ∈ B(x;δ), then for its original
it must hold that

y0 ∈ B
(
x;δ+ (r −δ1)

)⊂ B
(
xi ;r +δ+ (r −δ1)

)
,

hence y0 ∈ Mxi ,r+δ+(r−δ1) = Graph(hx ). Following the change of M to Mσ in coordinates around x, we
see that y ∈ Graph(h∞

x ) must hold.

2.5 Embedding into a trivial bundle

Let π : N → M be the normal bundle over M immersed in (Q, g ), a Riemannian manifold of bounded
geometry. We are going to construct a trivial bundle N over M that contains N and preserves uniform
properties. As a second step, we extend a normally hyperbolic vector field to this trivial bundle setting.
This procedure is also alluded to in [Sak94, p. 333–334], but especially in the case of bounded geometry
requires a more careful inspection.
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Theorem 2.39 (Uniform embedding of a normal bundle in a trivial bundle).
Let M ∈ C k≥1

b,u be a uniformly immersed submanifold of the bounded geometry manifold (Q, g ). Then

there exists an embedding λ : N ,→ N of the (nontrivial) normal bundle π : N → M into a larger, trivial
vector bundle N = M ×Rn . The embedding map λ ∈C k−1

b,u is a quasi-isometry when restricted to N≤η for

any η> 0 and the splitting N =λ(N )⊕N⊥ is C k
b,u , where N⊥ is chosen perpendicular to λ(N ) according

to the standard Euclidean metric on Rn .

Note thatλ only has smoothness C k−1 since N ∈C k−1 is the normal bundle of M ∈C k . The image bundle
λ(N ) ⊂ N has smoothness C k , though, since its construction only involves the immersion M →Q. This
increase of smoothness is possible because we do not view λ(N ) as a normal bundle with respect to the
differentiable structure of Q anymore. This can be compared to the remark in [Fen72, p. 205] and the
reference to [Whi36, Lem. 23] therein.

The idea of the proof is to use normal coordinate charts of Q covering M to construct local trivialization
maps of N . In such charts B(x;δ), we have, from Definition 2.21, Mx,δ = expx

(
Graph(hx )

) ⊂ M and
trivialization maps τx for the vector bundle trivialization diagram

N ⊃ N |Mx,δ

π

��

τx // Mx,δ×Nx

p1

}}
M ⊃ Mx,δ

(2.35)

Then we take a uniformly locally finite cover of M by sets Mxi ,δ. The trivializations on each Mxi ,δ

induce a spanning set of sections, i.e. a frame. Using the uniformity of the cover, we can globally glue
these frames together to obtain rank(N ) = n = (K +1) rank(N ). Here, K is the maximum number of
overlapping charts in the cover. This identifies λ(N ) as the subbundle of N = M ×Rn spanned by these
glued frames.

Proof. Let δ be Q-small as in Definition 2.8, as well as sufficiently small such that M is given as the graph
of h• : T•M → N• in normal coordinates as in Definition 2.21. For any x ∈ M we have a trivialization
map

τx = (expx , p2)◦Dexp−1
x : N |Mx,δ

∼−→ Mx,δ×Nx , (2.36)

where we canonically identified T(TxQ) ∼= (TxQ)2 and apply expx only on the base TxQ and p2 on the
fibers of T(TxQ). In a normal coordinate representation (see page 42, Figure 2.2 on the right) this
just means that we project the normal fiber Nx ′ at any point x ′ = expx (ξ,hx (ξ)) ∈ Mx,δ onto Nx . By
Corollary 2.31 this projection is approximately orthogonal and bounded away from non-invertibility for
small δ, hence τ• ∈C k−1

b,u and it is a quasi-isometry, but only on a finitely sized neighborhood N≤η|Mx,δ

since it acts linearly on the fibers of N |Mx,δ . We then choose a uniformly locally finite cover
⋃

i≥1 Mxi ,δ of
M such that the sets Mxi ,δ/2 already cover M .

Next, we prove the existence of a finite set of C k−1
b,u sections that everywhere span N . Let G = (V ,E) be

the (possibly infinite) graph whose vertices are sets in the cover, V = {Mxi ,δ}i≥1, and edges are added
between overlapping sets, i.e. E = {(A,B) ∈ V 2 | A ∩B 6= ;}. Each set in the cover overlaps at most K
other sets, so the maximal degree of G is bounded by K . Therefore, we can ‘color’ the vertices of G with
numbers {0, . . . ,K } such that no two connected vertices have the same number. Sequentially for each
i ≥ 1, set the number of vertex i to one of the numbers {0, . . . ,K } that is not already taken by its neighbors.
We thus obtain a map c : N→ {0, . . . ,K } such that each preimage c−1(k) labels a collection of mutually
disjoint sets of the cover.
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Let n denote the rank of N and let N = M ×Rn be a trivial bundle with rank n = n (K +1). On each Mxi ,δ

we have an orthogonal frame ei of n sections that span N , induced by the local trivialization, while on
N we have the global orthogonal frame e of standard unit sections. The latter can also be viewed as
a (K +1)-tuple of n-frames {ek }0≤k≤K on Rn = (Rn)K+1. Since all spaces have (the standard Euclidean)
inner products, the dual frames can be canonically identified as the inverse e∗i = e−1

i : Nxi →RN and a
projection e∗k = pk : Rn →Rn onto the k-th n-tuple of all n coordinates respectively. Let the functions χi

be a square-sum partition of unity subordinate to the cover according to Corollary 2.18 and define the
embedding

λ : N≤η ,→ N≤η : (m,ν) 7→ ∑
i≥1

χi (m)ec(i ) e∗i τxi (m,ν). (2.37)

This mapping is C k−1
b,u as a composition of such maps (and can be extended, albeit non-boundedly so, to

a map N ,→ N ). The τxi are quasi-isometries, while ec(i ) e∗i is isometric on each Mxi ,δ. Each frame ec(i )

is orthogonal to the frame of any overlapping set Mx j ,δ since c( j ) 6= c(i ) and the χi squared sum to one.
Thus

∑
i χi ec(i ) e∗i is an isometry, and so λ is a quasi-isometry.

Let p and p⊥ = 1−p denote the projections from N onto N and N⊥, respectively. One can verify that

p = ∑
i , j≥1

χi χ j ec(i ) e∗c( j ) (2.38)

is the projection onto N by noting that λ(N ) equals the image of
∑

i≥1χi ec(i ), while the identities

e∗k el = δkl and
∑
i≥1

χ2
i = 1

can be used to show that p2 = p. Formula (2.38) shows that both p, p⊥ ∈ C k
b,u , hence the splitting

N =λ(N )⊕N⊥ is C k
b,u .

Next, we must extend a vector field v on N to the larger bundle N . There are additional directions
along the fibers of N⊥ and the extended vector field v must be such that it is normally hyperbolic in
these directions as well. On the other hand, the uniform boundedness of v must be preserved. We
do not assume here that M is the exact invariant manifold, since these results shall be applied after
application of Theorem 2.38, which has smoothed and slightly altered M such that it is not the original
NHIM anymore. The extension v will keep N invariant and is identical to v on N , so in the end, we can
conclude that the perturbed manifold is contained in N and restrict to the original setting again.

Lemma 2.40 (Normally hyperbolic extension of a vector field).
Let λ : N ,→ N = M ×Rn be a trivializing embedding of vector bundles as in Theorem 2.39 and let v ∈C l ,α

b,u

be a vector field on N with l +α≤ k −2. Let N |≤η be the restriction to some radius η> 0. Then v can be
extended to a vector field v on N , such that v is C l ,α

b,u on N≤η, leaves N invariant, and contracts at a given

exponential rate ρ < 0 along the fiber direction of N⊥ towards N ⊂ N .

To extend v to a vector field v on N with the required properties, we must do two things. First of all,
v must be extended from N through λ to the whole of λ(N )⊕N⊥ and secondly, a normal component
along the fibers of N⊥ must be added to make v contracting, thus normally hyperbolic in that direction.
The idea can be expressed in local coordinates (m, y, z) ∈λ(N )⊕N⊥ as

v(m, y, z) = v̂(m, y, z)+ v⊥(m, y, z) = (
v(m, y),ρ z

)
,

where v̂(m, y, z) = v(m, y) points ‘horizontally’ along λ(N ) and v⊥(m, y, z) = ρ z is the ‘vertical’ com-
ponent along the N⊥ fibers. By construction, the latter has the required contraction property in the
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N⊥ direction, while it preserves λ(N )⊕ {0} as an invariant manifold. We shall make this intuitive idea
rigorous by introducing an appropriate bounded connection to lift v to v̂ for z 6= 0; the second term v⊥

is canonically defined.

Proof. The embedding map λ is a quasi-isometry and of class C k−1
b,u , hence the pushforward λ∗(v) =

Dλ ·v ◦λ−1 is a C l ,α
b,u vector field on λ(N ) ⊂ N . From now on we identify N with λ(N ) as well as v with its

pushforward.

Let g be the standard Euclidean metric on N and ∇ the compatible, trivial, flat connection. The restricted
metric g⊥ = g |N⊥ is preserved by the connection ∇⊥ = p⊥ ·∇. We create the pullback bundle

E =π∗
N (N⊥) = {

(y, z) ∈ N ×N⊥ ∣∣πN (y) =πN⊥(z)
}∼= N ⊕N⊥ = N .

Note that we identify this pullback of N⊥ along the projection πN : N → M with the vector bundle
p : N → N , that is, we view N as the base manifold and N as bundle over N with fibers π−1

N (y) = N⊥
πN (y).

We naturally endow E with the pullback connection ∇̂ =π∗
N (∇⊥). With this connection, v can be lifted

to a unique vector field v̂ ∈X(N ) that is horizontal along N on E ∼= N , and thus the flow of v̂ preserves
the norm along the fibers of E , that is, v̂ · ‖ ·‖E = 0. More heuristically, we can say that the pullback
πN : N → M introduces a trivial additional base coordinate y ∈ Nm to the bundle πN⊥ : N⊥ → M .

To prove that v̂ ∈ C l ,α
b,u , we first recover an explicit representation of the Christoffel symbols of ∇̂ in

terms of trivial coordinates on E ∼= N = M ×Rn , and then a representation for the lifted vector field
v̂ . Let s ∈ Γ(N ), s ≡ s0 ∈ Rn be a constant section. Let m ∈ B(m0;δ) denote normal coordinates in M .
Define s⊥ = p⊥ · s ∈ Γ(N⊥) and ŝ = π∗

N (s⊥) ∈ Γ(E). Let X̂ ∈ TN a tangent vector in the base of E and
X = DπN (X̂ ) ∈ TM . Then we find for the covariant derivative ∇̂ on E

∇̂X̂ ŝ =π∗
N

(
p⊥ ·∇X (p⊥ · s)

)=π∗
N

(
p⊥ ·X i

[
p⊥ ∂s

∂mi
+ ∂p⊥

∂mi
s
])

.

We read off that the Christoffel symbols are given by p⊥ ∂p⊥

∂mi (DπN )i , so they are C k−1
b,u . The horizontal lift

v̂(m, y, z) = v(m, y)−p⊥ · (
∂p⊥

∂mi
z)(DπN v(m, y))i , (2.39)

then, is also C l ,α
b,u since all functions involved are at least C l ,α

b,u in these coordinates, and z is bounded on

N≤η.

We define v⊥ as the Euler vector field along the fibers of N ∼= E , taking values in Vert(E). Each fiber
E(m,y) = N⊥

m is a linear space, so the tangent space at any point is canonically identified with the fiber
itself, which allows us to canonically define

v⊥ : N → TN : (m, y, z) 7→ ρ z ∈ Tz N⊥
m = Vert(E)(m,y,z). (2.40)

This vector field leaves N ⊂ N invariant, while generating a flow that attracts towards N at the exponen-
tial rate ρ < 0. It is clear that v⊥ ∈C k

b,u for any k when z is bounded on N≤η.

We conclude that the vector field v = v̂ + v⊥ indeed leaves N invariant. Since v̂ is neutral in the fiber
directions of E and v⊥ contracting at rate ρ, it follows that v is contracting with rate ρ as well. The
combined vector field v is defined in terms of v and other functions that are all at least C l ,α

b,u , hence

v ∈C l ,α
b,u .
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2.6 Reduction of a NHIM to a trivial bundle

Having set up the theory of bounded geometry spaces, we are finally in a position to reduce a general
normally hyperbolic system to the setting of a trivial bundle. That setting is required to apply our basic
Theorem 3.2 on persistence of NHIMs. Let M ∈C k,α

b,u with k ≥ 2 and 0 ≤α≤ 1 be a uniformly immersed
or embedded submanifold in (Q, g ) of bounded geometry and furthermore assume that M is an r -NHIM
with r = k +α for the vector field v ∈C k,α

b,u on Q.

Remark 2.41. The bounded smoothness requirement k ≥ 2 is dictated by Theorem 2.33. It is not present
in the compact case where the normal bundle can be “jiggled slightly” [Fen72, Prop. 2] to make it
sufficiently smooth to model a C k flow for k ≥ 1. Hypotheses 2 and 3 in [BLZ99, p. 987] require similar
conditions in the noncompact setting in Banach spaces, see also the discussion after Corollary 3.5
and Remark 3.13. I have not investigated in detail whether the C 2

b requirement is necessary, or if
M ∈C 1

b,u could be modeled as a sufficiently small section of the normal bundle of a smooth approximate
manifold. ♦

We reduce this system to a trivial bundle in the following steps:

i. approximate M by a smoothed manifold Mσ;

ii. construct a tubular neighborhood of M in the normal bundle N of Mσ;

iii. embed N into a trivial bundle N = Mσ×Rn , and construct an extended, normally hyperbolic vector
field v ;

iv. after application of the basic persistence theorem in the enlarged bundle, push the results to the
original setting and conclude that M persists.

Proof of Theorem 3.1. Assume the hypotheses of the theorem. First, Theorem 2.38 gives a smooth,
C k -close approximation Mσ ∈C l

b,u of M , where the choice l = k +10 suffices and σ> 0 will be fixed later.

The C k,α bounds of Mσ are uniformly close to those of M for all σ small. Then, Theorem 2.33 says that
there exists a tubular neighborhood ϕ : N≤η ∼−→ B(Mσ;η) where the size η> 0 depends only on the C 2

bounds of Mσ. These bounds are of the same order as those of M , independent of σ. Hence, we can
choose σ so small that ‖Mσ−M‖k ≤σ≤ η

2 and the neighborhood B(M ;η/2) is fully within the tubular
neighborhood N≤η of Mσ. The map ϕ is a C l−1 bounded (local) diffeomorphism and a quasi-isometry,
so by the reasoning4 before Definition 2.32, a pullback by ϕ does not change the normal hyperbolicity
growth rates of the vector field v . The bounded continuous splitting (1.9) of TMQ is also preserved.

Next, as a result of Theorem 2.39, N is embedded into the trivial bundle

λ : N ,→ N = Mσ×Rn = N ⊕N⊥.

The embedding is a quasi-isometry and so preserves hyperbolicity properties of v . The extended
vector field v ∈ C k,α

b,u on N≤η is constructed in Lemma 2.40 as a lift of v , so the flow preserves N≤η
and intertwines with the projection onto N , while in the perpendicular direction along the fibers
of N⊥ it has the same normal hyperbolicity properties as v . Boundedness of the invariant splitting
TMQ = TM ⊕N+⊕N− is also preserved under these quasi-isometries. The additional directions along
N⊥ are stable and invariant, and have bounded projections by construction. Thus, M is an r -NHIM for
v as well.

4This is similar to Fenichel’s argument in [Fen72, p. 203] that normal hyperbolicity is independent of a choice of metric
when M is compact.
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The invariant manifold M is given by the graph of a section h ∈ Γ(N ) ⊂ Γ(N ), and from Theorem 2.38 it
follows that ‖h‖k ≤σwhile h ∈C k,α

b,u . By Lemma 2.27, X = Mσ has bounded geometry of order l−2 = k+8,

which is sufficiently smooth for the conditions of Theorem 3.2, while Y =Rn is clearly a Banach space.
Hence, we are in the trivial bundle setting, and all conditions are satisfied.

A small perturbation of v in the original setting in Q corresponds to a small perturbation of v ∈X(N ),
while N≤η is preserved under the flow by construction. Therefore, after application of Theorem 3.2
we recover a unique persistent invariant manifold M̃ and by construction M̃ = Graph(h̃) ⊂ N , so we
can restrict the system to N . Then it can be transferred back to Q under the quasi-isometries of the
embedding λ : N ,→ N and the tubular neighborhood map ϕ : N≤η→ B(M ;η) ⊂Q.

All size estimates can be transferred between the settings (with bounded factors) due to the near
isometry and uniform C k,α boundedness of ϕ and λ. We conclude that M̃ is a C k,α

b,u submanifold of Q for
appropriate estimatesσ,ε, and δ, whereσmust be chosen sufficiently small as well to make ‖M̃−M‖k−1

small.

This completes the reduction from the general setting in bounded geometry to that of a trivial bundle
and proves Theorem 3.1.



Chapter 3

Persistence of noncompact NHIMs

This chapter contains the main proof of persistence of noncompact normally hyperbolic invariant
manifolds, formulated in Theorem 3.2. This theorem is formulated in a specific setting: we assume that
the invariant manifold M is (nearly) the zero section of a trivial vector bundle. This is a slightly more
general formulation than in [Hen81; Sak90]. There, it is assumed that in a product X ×Y of Euclidean
(or Banach) spaces, the invariant manifold M is given as the graph of a function h : X → Y . We shall
also assume that Y is a vector space, but we let X instead be a Riemannian manifold that is finite-
dimensional and has bounded geometry. In Chapter 2 on bounded geometry, we extended the result
obtained here to a setting where M is assumed to be a general submanifold of a Riemannian manifold
(Q, g ) that is again finite-dimensional and of bounded geometry. We assume the basic statements from
Section 2.1 to be known.

This chapter is organized as follows. First we state the two main theorems; both the general version with
M a submanifold of Q and the X ×Y trivial bundle version to be proved in this chapter. We provide
detailed remarks on these theorems and compare them to the literature. Then we present an outline of
the proof of Theorem 3.2. Section 3.3 presents some thoughts on replacing the classical compactness by
uniformity conditions, and presents examples that indicate the necessity of various assumptions we
impose.

In Section 3.4 we transform the (still somewhat geometrical) formulation of Theorem 3.2 into a more
explicit setup suitable for analysis. In the subsequent section, we prove (with relatively little work) the
existence and uniqueness of the persistent manifold M̃ = Graph(h̃). It automatically follows that h̃ is
bounded and uniformly Lipschitz.

The last sections are devoted to the tougher job of proving C k,α smoothness, exhausting the spectral gap.
A formal scheme is set up, and we work out the details for C 1 smoothness. Higher, C k smoothness follows
along the same lines by induction. The addition of Hölder continuity to obtain C k,α smoothness is
included as a natural extension to (uniform) continuity that slightly simplifies the spectral gap estimates.
See the proof outline and the introduction of Section 3.7 for more details.

3.1 Statement of the main theorems

The main theorem on persistence was already formulated in the introduction. We state it again to
directly compare it to the trivialized bundle version of Theorem 3.2. The main theorem is reduced to

61
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this trivialized version in Section 2.6; in this chapter we shall prove the latter version. Then we formulate
corollaries of these theorems, both to present simpler versions and to compare our result to well-known
results from the literature.

Theorem 3.1 (Persistence of noncompact NHIMs in bounded geometry).
Let k ≥ 2, α ∈ [0,1] and r = k +α. Let (Q, g ) be a smooth Riemannian manifold of bounded geometry and

v ∈C k,α
b,u a vector field on Q. Let M ∈C k,α

b,u be a connected, complete submanifold of Q that is r -normally
hyperbolic for the flow defined by v, with empty unstable bundle, i.e. rank(E+) = 0.

Then for each sufficiently small η > 0 there exists a δ > 0 such that for any vector field ṽ ∈ C k,α
b,u with

‖ṽ − v‖1 < δ, there is a unique submanifold M̃ in the η-neighborhood of M, such that M̃ is diffeomorphic
to M and invariant under the flow defined by ṽ. Moreover, M̃ is C k,α

b,u and the distance between M̃ and M

can be made arbitrarily small in C k−1-norm by choosing ‖ṽ − v‖k−1 sufficiently small.

Theorem 3.2 (Persistence of noncompact NHIMs in a trivial bundle).
Let k ≥ 2, α ∈ [0,1] and r = k +α. Let (X , g ) be a smooth, complete, connected Riemannian manifold of

bounded geometry and Y a Banach space. Let vσ ∈C k,α
b,u be a family of vector fields defined on a uniformly

sized neighborhood of the zero-section in X ×Y with family parameter σ ∈ (0,σ0]. Let the submanifold
Mσ = Graph(hσ) be given as the graph of a function hσ ∈ C k,α

b,u (X ;Y ) and let Mσ be an r -NHIM with
rank(E+) = 0 for the flow defined by vσ where all estimates are uniform in σ and additionally ‖hσ‖2 ≤σ
holds.

Then for each sufficiently small η> 0 there exist σ1, δ> 0 such that for any σ ∈ (0,σ1] and any vector field
ṽ ∈C k,α

b,u with ‖ṽ − vσ‖1 < δ, there is a unique submanifold M̃ = Graph(h̃), h̃ : X → Y , ‖h̃‖0 ≤ η such that

M̃ is invariant under the flow defined by ṽ. Moreover, h̃ ∈C k,α
b,u and ‖h̃‖k−1 can be made arbitrary small

by choosing ‖h‖k and ‖ṽ − vσ‖k−1 sufficiently small.

Remark 3.3. Let us make some remarks on these theorems.

i. The spectral gap condition contained in Definition 1.11 of r -normal hyperbolicity is essential to
the proof. The C k,α-smoothness result is optimal, see Section 1.2.1.

ii. In Theorem 3.1, both M and M̃ are assumed to be (non-injectively) immersed according to
Definition 2.21. If M is assumed uniformly embedded according to Remark 2.22, then M̃ will
be uniformly embedded again when δ is sufficiently small.

iii. The additional family parameter σ in Theorem 3.2 is required to reduce Theorem 3.1 to this case.
If the unperturbed manifold is given as M = X × {0}, i.e. the zero section, then the family vσ can
simply be taken constant and all σ dependence can be dropped from the formulation.

iv. We only obtain a C k−1-norm estimate for the perturbation distance of M̃ away from M , even
though M̃ ∈C k,α is preserved. This is due to a linearization along Y and the smoothing convolution
used to restore C k,α smoothness after linearization. See Section 3.4, in particular remarks 3.13
and 3.15, for more details. I fully expect it to hold that M̃ and M are C k,α close when ‖ṽ − v‖k,α is
small.

v. The minimum smoothness requirement k ≥ 2 is a stronger assumption than k ≥ 1 in the well-
known compact case. This seems to be intrinsic to the noncompact case. If the spectral gap
condition only holds for some 1 ≤ r < 2, then we can still obtain a perturbed manifold M̃ . This
manifold M̃ will generally not have better than C r smoothness, though.

vi. We allow both values α= 0 and α= 1, where α= 0 is considered an empty condition (besides the
boundedness and uniform continuity). Thus, if r = k +1 satisfies the spectral gap condition (1.11),
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then we can choose both C k,1 or C k+1,0 as resulting smoothness for M̃ , if M had the same smooth-
ness. Thus, if M was sufficiently smooth, then the choice M̃ ∈C k+1,0 yields the best result. Note,
though, that by Rademacher’s theorem, Lipschitz functions are differentiable almost everywhere,
so the difference is not that big.

Finally, it should also be noted that the spectral gap condition is a strict inequality on r , so if we
can choose r = k integer, then we can also find an α> 0 such that r ′ = k +α satisfies the spectral
gap as well. This shows that in this context C k

b,u ‘integer’ smoothness really is a special case of C k,α
b,u

‘fractional’ smoothness.

vii. Both Riemannian manifolds Q in Theorem 3.1 and X in Theorem 3.2 are assumed to be finite-
dimensional; multiple results on bounded geometry crucially depend on this fact. On the other
hand, we allow Y to be an infinite-dimensional Banach space simply because everything naturally
generalizes to that setting. Note that we do not allow semi-flows as in [Hen81; BLZ08], so the case
that Y is infinite-dimensional may not be that useful.

viii. These results are weaker than those in the well-known compact case in a few aspects. First of all,
we use a stricter notion of normal hyperbolicity, see Remark 1.10. This seems to be a fundamental
restriction of the Perron method; the more general definition of normal hyperbolicity is successfully
applied to noncompact manifolds in [BLZ08]. Secondly, we only include the stable normal bundle
E−. Adding the unstable bundle E+ as well should be possible, see Section 4.4 for more details.

ix. While we do prove that the NHIM persists into a new invariant manifold M̃ , we do not prove that
M̃ is again normally hyperbolic. I fully expect this to be true though: the perturbed flow satisfies
slightly perturbed exponential growth conditions and the spectral gap is an open condition, so
should be preserved under sufficiently small perturbations. It remains to be proven that M̃ again
has a continuous invariant splitting (1.9) with bounded projections. This is one possible reason for
breakdown of normal hyperbolicity [HL06]. In Section 4.5 we sketch how to recover the invariant
stable fibration and the invariant splitting.

x. In both theorems, we assumed that M ∈C k,α
b,u . Just as in the compact case, there is forced smooth-

ness, see [HPS77]. That is, if we only have M ∈C 2
b , while it is r -normally hyperbolic and the system

is C k,α
b,u , then we have in fact M ∈C k,α

b,u . Note that we do require k ≥ 2 unlike the compact case, see
also point v .

This statement can be verified by reviewing the persistence proof under zero perturbation. We
construct a smoothed approximation of M in Theorem 3.1 to model everything on, and in Theo-
rem 3.2 we smoothen the linearization of the vertical part vY of the original vector field. These can
be made as smooth as required, while we only use the perturbed flow (3.16) or the C k,α

b,u smooth

decomposition (3.24) (hence with remainder f̃ ∈ C k,α
b,u ) in the rest of the proof. Therefore the

resulting manifold will satisfy M̃ = M ∈C k,α
b,u . ♦

These two theorems reduce to the corollaries formulated below, when M is compact or when Q =
Rm+n with standard Euclidean metric and M =Rm × {0}. The statements then significantly reduce in
complexity, and are comparable to well-known results.

Firstly, the case that M is compact. Then we can take a (pre)compact neighborhood B(M ;ε) ⊂Q of M
and thus conclude that bounded geometry holds on B(M ;ε), ignoring irrelevant boundary problems.
Any C k,α function on B(M ;ε) is automatically C k,α

b,u , so Theorem 3.1 reduces to the following corollary.

For simplicity we leave out α-Hölder continuity and the C k distance estimate between M and M̃ .
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Corollary 3.4 (Persistence of compact NHIMs).
Let k ∈Z≥2, let (Q, g ) be a smooth Riemannian manifold and v ∈C k be a vector field on Q. Let M ∈C k

be a connected, compact submanifold of Q that is k-normally hyperbolic for the flow defined by v, with
empty unstable bundle, i.e. rank(E+) = 0.

Then for each sufficiently small η > 0 there exists a δ > 0 such that for any vector field ṽ ∈ C k with
‖ṽ −v‖1 < δ, there is a unique submanifold M̃ in the η-neighborhood of M, such that M̃ is diffeomorphic
to M and invariant under the flow defined by ṽ. Moreover, M̃ is C k .

This corollary closely resembles [Fen72, Thm. 1] in the absence of a boundary ∂M (a boundary is allowed
when M is overflowing invariant, see also sections 1.6.3 and 4.3). Note that our definition of normal
hyperbolicity is less general (see Remark 1.10), and that we exclude unstable normal directions and
the case1 k = 1, while we do allow M to be an immersed submanifold. The persistence result of Hirsch,
Pugh, and Shub [HPS77, Thm. 4.1 (f)] is similar to that in Fenichel’s work; it additionally includes Hölder
smoothness and allows immersed submanifolds as well.

Secondly, the case of M = Rm × {0} ⊂Q = Rm+n . Again, Rm+n has bounded geometry with one trivial,
global chart. Thus, any object is C k

b,u if it can (locally) be described by C k
b,u functions, but with common

global bound and continuity modulus. Then Theorem 3.2 reduces to the following corollary. We again
suppress Hölder continuity and drop the σ parameter dependence, which was only relevant for the
reduction of Theorem 3.1.

Corollary 3.5 (Persistence of a trivial NHIM in Euclidean space).
Let k ∈Z≥2. Let v ∈C k

b,u be a vector field on Rm+n and let M =Rm × {0} be a k-NHIM for the flow defined
by v, with empty unstable normal bundle.

Then for each sufficiently small η > 0 there exists a δ > 0 such that for any vector field ṽ ∈ C k
b,u with

‖ṽ−v‖1 < δ, there is a unique submanifold M̃ = Graph(h̃), h̃ : Rm →Rn , ‖h̃‖0 ≤ η such that M̃ is invariant
under the flow defined by ṽ. Moreover, h̃ ∈ C k

b,u and ‖h̃‖k−1 can be made arbitrary small by choosing
‖ṽ − v‖k−1 sufficiently small.

This theorem can be compared, for example, to [Sak90, Thm. 2.1]. Sakamoto’s theorem is specifically
targeted to singular perturbation problems. His conditions are more specific and concrete: the invariant
manifold M is assumed to consist of stationary points and normal hyperbolicity is formulated in terms
of the eigenvalues of normal derivatives of the vector field at M . He starts with an invariant manifold
that is the graph of a nonzero function h ∈C k

b ; this he reduces to the zero graph case M =Rm × {0}, while
he incurs a loss of one degree of smoothness, obtaining a C k−1

b persistent manifold and he requires
k ≥ 3, see [Sak90, p. 50]. He does allow both stable and unstable normal bundles.

In their series of papers [BLZ98; BLZ99; BLZ08], Bates, Lu, and Zeng obtained multiple results on
noncompact NHIMs, including a persistence result. Most importantly, they work in Banach spaces with
semi-flows, which adds nontrivial obstacles to be overcome, and allows application to PDE problems.
On the other hand, my setting allows the ambient space to be a manifold, albeit finite-dimensional.
They use the graph transform instead of the Perron method. This allows for the more general definition
of relative normal hyperbolicity as in Remark 1.10. They include both stable and unstable normal
directions, while they do not prove Hölder regularity. Finally, in [BLZ08] the interesting idea is developed
to start with an approximate NHIM only.

If we ignore these differences, then their results fit in between the formulations of Theorem 3.1 and
Corollary 3.5. Their invariant manifold M is immersed in a Banach space, but not necessarily described

1This was for technical reasons in the noncompact setting, see Remark 3.3, v , and could be repaired in the compact setting.
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by the graph of a function h. Their hypothesis [BLZ08, p. 363] that the splitting does not twist too much
is a bounded Lipschitz condition on the (approximate) splitting of the (un)stable and tangent bundles
over M . This condition is similar, but slightly weaker than our condition M ∈C 2

b,u , see also remarks 3.3, v
and 3.13.

Although the results of Bates, Lu, and Zeng are more general and complete in many aspects, I think
that these cannot easily be generalized to prove a version of Theorem 3.1, set in an ambient manifold
of bounded geometry. One could hope to use the Nash embedding theorem to obtain the ambient
manifold (Q, g ) as an isometrically embedded subspace of someRn . Then the dynamical system must be
extended from Q to Rn , such that M is still normally hyperbolic as a submanifold of Rn ; this procedure
can be compared to the reduction in Section 2.6. The problem that arises is that the Nash embedding
theorem provides no control on the extrinsic curvature of the embedding2, so M need not be C 2

b in Rn . It
might be possible to work around this by proving a ‘bounded geometry version’ of the Nash embedding
theorem. Alternatively, their proof could likely be adapted to work with a uniform atlas of charts, e.g.
using theory similar to that developed in Chapter 2.

We should also mention the paper [JS99] by Jones and Shkoller. They generalize Fenichel’s results
on persistence of overflowing invariant manifolds to semi-flows on infinite-dimensional Riemannian
manifolds. They do assume the invariant manifold itself to be compact.

3.2 Outline of the proof

The proof of Theorem 3.2 is lengthy and involves a lot of details. We therefore first present an overview
of the separate steps involved in the proof.

First, in Section 3.4 we bring the system into a form that is suitable for application of further analytical
techniques. That is, we decompose the vector fields along X and Y directions and linearize the vertical
direction, leading to equations

ẋ = vX (x, y),

ẏ = vY (x, y) = A(x) y + f (x, y)

with a C 1-small term f . This allows us to apply a generalization of the classical Perron method for hy-
perbolic fixed points (see Section 1.4.2 for a quick overview) to NHIMs, first presented by Henry [Hen81,
Chap. 9]. In the case of a hyperbolic fixed point, we could fully linearize the system; here, we can
only linearize the normal directions, while we keep the full nonlinear form in the directions along X .
These cannot be linearized because we have no control to localize the dynamics in the directions along
X .

In the theorem, the invariant manifold M is given as a (small) graph h : X → Y . A coordinate change
to represent the invariant manifold as M = X × {0} would (re)introduce a loss of smoothness that we
carefully worked around in Chapter 2 by means of a uniformly smoothed submanifold. The graph
h can be chosen arbitrarily close to the zero section, and together with the small perturbation ṽ − v ,
this influences the exponential growth rates (1.10) only slightly. We recover equations (3.16) for the
perturbed system that satisfy slightly perturbed exponential estimates (3.17), even when we decouple

2This can be seen from the result that the Nash embedding can be obtained into an arbitrarily small ball. As an explicit
example, take Q =Rwith standard metric and embed it into R2 via the map r (θ) = arctan(θ)/π+ 1

2 in polar coordinates. Since
the integral of r (θ) diverges both when θ→±∞, we obtain (after arc length reparametrization) an isometric embedding of R
‘curled up’ into B(0;1), while the extrinsic curvature grows unbounded for θ→−∞.
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the equations for x and y by inserting curves y(t ) and x(t ), respectively, that are ‘close’ to solution curves
of the original system. We directly include the perturbation ṽ − v into the horizontal component of the
vector field; for the vertical component we include the perturbation in the nonlinear term f̃ . This gives
rise to a nonlinear, horizontal flow Φy (t , t0, x0) and a linear, vertical flow Ψx (t , t0) y0 that depend on a
curve in the other space and satisfy estimates

∀ t ≤ t0 : ‖DΦy (t , t0, x0)‖ ≤CX eρX (t−t0),

∀ t ≥ t0 : ‖Ψx (t , t0)‖ ≤CY eρY (t−t0),

where ρX , ρY are close to the original exponential rates −ρM , ρ−.

The next step in Section 3.6 is to define a pair of maps (3.32) between curves in X and Y in terms of
these flows and the decomposed vector fields (3.16). The composition T = TY ◦ (TX ,pr1) of these maps
will be a contraction on bounded curves in Y depending on a parameter x0 ∈ X , but we measure these
curves with ‖·‖ρ norms for some exponent ρ with ρY < ρ < ρX . Lemma 3.27 shows that the fixed points
of T are precisely the vertical parts y(t ) of solution curves of the perturbed vector field ṽ that stay in the
tubular neighborhood ‖y‖ ≤ η of M and have initial value x0 for their horizontal part x(t ). The maps TX

and TY generalize the center-unstable and stable components, respectively, of the Perron integral in the
fixed point case, cf. Section 1.4.2. The nonlinear flow along the invariant manifold is used in TX , but now
depends on the vertical component y(t ) too, while in the vertical, normal directions we use a variation
of constants integral to separate the nonlinear terms from the linearized flow, just as in the classical
Perron method.

This setup leads to a fixed point map Θ : X → Bρ
η (I ;Y ) that maps an initial value x0 ∈ X to the unique

bounded curve in Y that corresponds to a full solution curve (x, y) such that x(0) = x0. If we now evaluate
the vertical solution curve y =Θ(x0) at t = 0, then we obtain the vertical component y0 = y(0) ∈ Y of the
initial value corresponding to x0 ∈ X . All these solution curves stay close to M and form an invariant
manifold, so the graph of

h̃ : X → Y : x0 7→Θ(x0)(0)

must describe the unique perturbed invariant manifold M̃ . Application of the contraction principle
immediately implies that h̃, and therefore M̃ , is Lipschitz continuous.

In Section 3.7 we continue to prove that M̃ is C k,α. We start that section with a more detailed overview of
this smoothness part of the proof and in Section 3.7.1 we present a scheme to obtain the first derivative
in a number of steps. Higher smoothness then follows along the same lines, just with more complex
expressions, see Section 3.7.9. Let us focus here on the basic ideas.

Smoothness of M follows directly from smoothness of Θ. We study the derivatives of Θ by formal
differentiation of the fixed point equation; this leads to Equation (3.42). But let us consider for a
moment a simpler heuristic formulation, similar to equation (1.8) for the hyperbolic fixed point in
Section 1.4.3. Then the derivatives of the Perron fixed point map are

Dk T (y)
(
δy1, . . . ,δyk

)
(t ) =

∫ t

−∞
Ψ(t ,τ) ·Dk f̃ (y(τ))

(
δy1(τ), . . . ,δyk (τ)

)
dτ.

Even if Dk f̃ is bounded, it acts as a multilinear map on a k-tuple of variations δyi , each having
exponential growth of order ρ, so the result has exponential growth of order k ρ. This is canceled
by the exponential growth of Ψ(t ,τ) if ρY < k ρ. Then Dk T can be viewed as a contraction on DkΘ, but
only when DkΘ is viewed as a map into B k ρ(I ;Y ). To obtain continuity of the maps Dk T , we have to
add another arbitrarily small term µ< 0 to the exponent, i.e. k ρ+µ; in case of α-Hölder continuity we
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need µ=αρ. These key facts show how the spectral gap condition limits smoothness; see Section 1.2.1
for a detailed discussion and an example that shows that our smoothness result is in fact sharp.

The technique of using a scale of Banach spaces as developed by Vanderbauwhede and Van Gils [VG87],
and the fiber contraction theorem of Hirsch and Pugh [HP70] can be applied, and we obtain each DkΘ

as a fixed point in the appropriate space. The final conclusion h̃ ∈ C k follows by evaluating DkΘ at
t = 0.

We have to be very careful however: higher derivatives of maps between manifolds are difficult to define
(at least in a practical way), so we develop some theory to describe higher derivatives using normal
coordinates in Appendix C and generalize results from Rn to this setting. Secondly, the derivatives of
TX , TY only exist as ‘formal derivatives’ on ‘formal tangent bundles’. We endow these formal tangent
bundles with a topology induced by parallel transport. This allows us to study continuity of the formal
derivatives D˜ TX , D˜ TY at the cost of introducing additional holonomy terms. Finally, we do obtain the
DkΘ maps as derivatives of Θ.

3.3 Compactness and uniformity

The classical results on normally hyperbolic invariant manifolds [Fen72; HPS77] assume the invariant
manifold to be compact. This is used to obtain uniform boundedness and continuity of the vector
field and other objects. Here, instead, we assume these objects to have the required uniformity directly,
replacing the compactness requirement. In this section, we expose some of the issues that need to be
dealt with and we present accompanying examples. We focus here on those issues that are not (clearly)
present in the literature and only show up when considering general manifolds. See Section 1.2.2 for
motivation and examples of noncompact NHIMs.

The primary requirement in the noncompact case—well-known to experts in the field—is that the vector
field defining the system must be uniformly bounded, including all its spatial derivatives up to the order
of the smoothness result requested. Secondly, the vector field should be uniformly continuous, and
uniformly α-Hölder continuous when α 6= 0. The case α= 0 really is a special case, whose proof needs
more care. Hölder continuity provides an explicit continuity estimate, which is tailored to the problem;
‘plain’ uniform continuity does not provide this, forcing us to use an (arbitrarily) small amount of the
spectral gap to compensate.

In the compact case, Fenichel [Fen72, p. 200] argues that persistence of the invariant manifold should
be independent of the choice of a Riemannian metric. Indeed, he proves that the exponential growth
rates are independent of such a choice, as all metrics are equivalent. In a noncompact setting, however,
non-equivalent metrics do exist and we do expect persistence to depend on the choice of metric, since
it determines which perturbations are globally C 1 small. Moreover, we make a technical uniformity
assumption of bounded geometry (see Chapter 2, also for example spaces of bounded geometry) on
both the underlying space and the invariant manifold. These assumptions are automatically satisfied in
the compact case. It is not clear though to what extend they are essential in the noncompact case.

The remainder of this section is devoted to examples that show multiple aspects that should be treated
carefully in the noncompact setting, while being trivially fulfilled in the compact case. Some interesting
examples can also be found in the early work [Hop66] by Hoppensteadt. He presents counterexamples
to uniform stability of solutions in a time-dependent singular perturbation setting when the stability
criteria do not have sufficient uniformity.
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3.3.1 Non-equivalent metrics

As a simple example of two metrics leading to different results in the noncompact case, let us consider
the following.

Example 3.6 (Non-equivalent metrics).
Let X =R2, Y =Rwith on the one hand the usual Euclidean metric ge and on the other hand a metric
gs induced by a diffeomorphism similar to stereographic projection from the sphere (with North Pole
removed) onto X =R2.

Let the vector field be given by

v(x, y) = (
arctan(‖x‖)

x

‖x‖ , λ y
)

(3.1)

with λ < 0. This makes the vertical, y direction uniformly attracting with exponent λ, while in the
plane X × {0} the origin is an expanding fixed point and the exponential growth rate is everywhere
non-negative. Thus, M = X × {0} is an r -NHIM for arbitrarily large r and v ∈ C k

b,u for any k ≥ 1 on a
tubular neighborhood of M of size η= 1, say. See Figure 3.1 on the left side.

In polar coordinates (s,θ) on X we have

v(s,θ, y) = (
arctan(s), 0, λ y

)
.

Now, instead of the usual stereographic projection map (ϕ,θ) 7→ (s = tan(ϕ/2),θ) with ϕ= 0 at the South
Pole, we take

f : [0,π) →R≥0 : ϕ 7→ − log(1−ϕ/π) (3.2)

and the corresponding diffeomorphism Φ that acts trivially along the directions of θ and y coordinates.
This diffeomorphism induces a metric gs on X by pushforward of the standard metric on the sphere.
The system with metric gs is most easily studied by pullback to the sphere with North Pole removed, see
Figure 3.1 on the right side. This is an equivalent formulation since Φ is an isometry by construction.
The vector field is then represented on S2 ×R by

(Φ∗v)(ϕ,θ, y) = (
π(1−ϕ/π)arctan

(− log(1−ϕ/π)
)
, 0, λ y

)
. (3.3)

This shows that the vector field is still C 1
b , although not C 1

b,u anymore in this metric. More importantly,
the system can be extended to include the North Pole as an attracting fixed point. The rate of attraction
along the perpendicular y direction has not changed from λ, but along the horizontal directions of the
sphere, the attraction rate now is

lim
ϕ→π

D1(Φ∗v)(ϕ,0,0) =−π
2

. (3.4)

In both metrics the normal exponential attraction rate is ρY = λ < 0 since the linear flow on Y is
decoupled from X . The exponential growth rate on X does depend on the choice of metric. For the
Euclidean metric ge , we have ρX = 0. This follows from an analysis of the radial component ṡ = arctan(s)
of the system. At s = 0 this has unstable exponent 1, while away from s = 0 the tangent flow is uniformly
bounded away from both zero and infinity, so there the Lyapunov exponent is zero. With respect to
the metric gs , it follows from (3.4) that the Lyapunov exponent is ρX =−π

2 for solutions approaching
planar infinity. Thus, we see that if λ≥−π

2 , then the system is not normally hyperbolic with respect to
the metric gs , while X ×{0} is an r -NHIM for any r ≥ 1 under the metric ge . On the other hand, if λ<−π

2 ,
then the system is still only r -normally hyperbolic with respect to gs for r < π/(2λ). Again, we can
construct an explicit perturbation similar to that in Example 1.1. If we add a small vertical perturbation
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x

y

y

Figure 3.1: a normally hyperbolic flow with respect to Euclidean and sphere induced metrics.

εχ with support away from the poles (compare with Figure 1.3), then along meridians passing through
suppχ, the invariant manifold is lifted and approaches the North Pole ϕ = π approximately along a
graph y =C (π−ϕ)−2λ/π, while on meridians not passing through suppχ, the invariant manifold stays
at y = 0. See the perturbed flow lines in Figure 3.1. This results in unbounded C r derivatives of the
perturbed invariant manifold at the North Pole for r >−2λ/π. ©

We conclude that in the noncompact setting, normal hyperbolicity explicitly depends on the choice of
metric since metrics need not be equivalent. Moreover, the allowed size of the perturbations depends
on the metric.

Example 3.7 (Perturbation sizes depend on the choice of metric).
We extend Example 3.6 above. Let λ<−π

2 so that the system is normally hyperbolic with respect to both
metrics, and set

w(s,θ, y) = (
0, 0, arctan(s) sin(θ)

)
. (3.5)

Then the vector field v + εw is a C 1 small perturbation of (3.1) with respect to ge and perturbs the
original manifold M smoothly to a manifold M̃ that has height converging to y = −ε sin(2θ)π/(2λ)
along radials when s →∞. The pullback of M̃ to the sphere, however, has a discontinuity at the North
Pole, since s →∞ corresponds to ϕ→ π, and so the North Pole is approached at different constant
heights along these radials. This apparent contradiction that Φ∗(M̃) is not a C 1 small perturbation with
respect to gs stems from the fact that w is not C 1 small with respect to this metric. The vector field w
has unbounded derivatives since gs ‘squeezes’ distances when approaching planar infinity, that is, the
North Pole. ©

Thus, non-equivalent metrics also lead to different classes of C 1 small perturbations under which the
invariant manifold persists. Moreover we see that one cannot simply get rid of noncompactness by a
compactification argument. The metric gs is induced by a one-point compactification to the sphere, but
leads to different normal hyperbolicity properties than the noncompact case with metric ge . Any other
choice of the diffeomorphism Φ would lead to the same problems, since pullback of the metric ge must
introduce a singularity at the North Pole. This cannot be equivalent to a metric that extends regularly
there.
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3.3.2 Non-persistence of embedded NHIMs

Let us give another example which shows that an embedded invariant manifold need not persist. This
example clarifies the remarks already made in the introduction in Section 1.6.2: noncompact embedded
NHIMs can perturb into immersed manifolds. On the one hand, this example shows that it is natural to
consider immersed NHIMs. It also shows that a noncompact NHIM must have a uniformly sized tubular
neighborhood that does not self-intersect, in order to guarantee perturbation as an embedded manifold.
Further details can be found in Section 2.3 where the concept of a uniformly embedded submanifold is
defined.

x

y

y

x

Figure 3.2: collapse of a nearly self-intersecting invariant manifold.

In the example presented here, the unperturbed manifold is normally hyperbolic but noncompact and
‘touches’ itself in the limit to infinity, see Figure 3.2, the top image. In this case, we can find arbitrarily
small perturbations that will let the two persisting branches collapse into one at a finite point.

Example 3.8 (A non-uniformly embedded NHIM).
Let (x, y) ∈R2 =Q. For x ≤ 0 we define the vector field v of the system in polar coordinates, and for x ≥ 1

2
in Cartesian coordinates as

(ṙ, θ̇) = v(r,θ) = (1− r , −sin(θ/2)) if x = r cos(θ) ≤ 0,

(ẋ, ẏ) = v(x, y) = (e−x , −y) if x ≥ 1
2 .

(3.6)

We glue these vector fields together in a smooth way somewhere between x = 0 and x = 1
2 . Then the

manifold as shown at the top in Figure 3.2 is a NHIM. The flow attracts uniformly in the normal direction
with rate −1 (except that the rate may deviate slightly around the glued area), while along the manifold,
the flow has an expanding fixed point at (−1,0) and the contraction in the direction of x →∞ is weaker
than exponential. Explicitly solving the flow for x ≥ 1

2 yields

Φt (x, y) = (log(ex + t ) , y e−t ),

which exhibits the rates of contraction in the normal and tangential directions by considering either
projection in

lim
t→∞

1

t
log

(
πx,y ◦DΦt (x, y)

)
.
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Let us now introduce the very simple perturbation vector field w(x, y) = (−ε , 0) for x ≥ 1 and smoothly
cut off to zero left of x = 1. When this perturbation is added to the vector field v , the vertical line
x = − log(ε) becomes a stable, invariant set, see Figure 3.2 the bottom image. The upper and lower
branch of the original NHIM will both converge to the newly created fixed point (− log(ε) , 0). On the
right side of this point the manifold is given by the single line y = 0.

Each branch separately persists as a C∞ manifold, as could (naively) be expected. The problem is that we
have no control on the distance between the two branches, so for any ε> 0, these branches will collapse
at some point where the persisting object ceases to be an embedded manifold. As already remarked,
there are two ways to address this issue. One can abandon the implicit assumption that the NHIM
is an embedded submanifold and replace this by immersed submanifolds; this idea was introduced
already in [HPS77]. If one insists on having embedded submanifolds, even under perturbations, then
one must eliminate the possibility of these ‘collapses’ occurring. A sufficient condition is the existence
of a uniformly sized tubular neighborhood of the invariant manifold that does not intersect itself. Global
control on the perturbation distance of the invariant manifold will imply that the perturbed manifold
stays inside this tubular neighborhood and thus will not self-intersect. ©

3.3.3 Non-uniform geometry of the ambient space

The previous examples were set in Euclidean space. The next two examples show that additional
uniformity conditions must be imposed on a nontrivial ambient space. It is not enough to assume
uniform continuity and boundedness for the dynamical system. The first example is an extension to
the previous one and shows that the ambient space must have a uniformly finite injectivity radius. The
second example indicates that even if the ambient space has finite injectivity radius and trivial topology,
persistence might be lost due to non-bounded curvature of the ambient space.

Example 3.9 (Zero injectivity radius).
We construct as ambient space Q a cylinder whose radius shrinks exponentially. That is, we take
Q =R×S1 with metric g (x,θ) = dx2+e−2x dθ2. See Figure 3.3 for an impression, but note that the metric
induced by the embedding in R3 is not (and cannot be made) the same as g . The vector field

v(x,θ) = (1, 0) (3.7)

generates a simple flow along the cylinder, and each solution curve is a NHIM purely due to the fact that
all curves flow into an exponentially shrinking tube, while there is no contraction along the curve.

Figure 3.3: a non-uniform cylinder with a winding curve.

Let us consider the invariant manifold M = {θ = 0}. We add a perturbation to the vector field that is
given by θ̇ = ε for x ≥ 0 and is smoothly cut off to zero left of x = 0. This perturbation is smooth and C 1
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small with respect to the metric3 g . When the original curve M enters the region x ≥ 0, it is modified to
a curve M̃ that starts winding around the cylinder, as indicated in Figure 3.3.

This clearly cannot be represented in a tubular neighborhood of M in Q since the curve would leave
the neighborhood ‘above’ and reenter ‘from below’. On the other hand, the normal bundle of M can
be viewed as a covering of Q, and on that covering, M̃ is represented by the function θ(x) = εx, which
is still a bounded graph with norm ‖θ(x)‖ = εx e−x , but which winds around since θ ∈ [0,2π). Thus, a
globally finite injectivity radius seems a necessary requirement if we want the perturbed manifold to be
represented in a diffeomorphic tubular neighborhood of M . ©

The second example indicates that a finite injectivity radius is not enough; unbounded curvature of
the ambient manifold might lead to loss of persistence of the NHIM. It should be pointed out that this
example satisfies all properties of normal hyperbolicity with uniform estimates up to C 1 smoothness,
except that the vector field has no uniformly continuous derivative. I have not been able to add this final
property to create a complete counterexample where persistence fails in the absence of the curvature
property of bounded geometry only.

Example 3.10 (Unbounded curvature).
Let Q =R3 with metric

g (x, y, z) = dx2 +exp
(−2 |x|arctan(x z)

)
dy2 +exp

(−2 |x|)dz2, (3.8)

but with component functions symmetrically smoothed around x = 0. This Riemannian manifold is
invariant under translations in y and has a mirror symmetry involution in any plane of fixed y . Hence,
each submanifold { y = y0 } is geodesically invariant.

Let the vector field be

v(x, y, z) =
{ (

x, 0, −arctan(z)
)

for |x| ≤ 1,(
sign(x), 0, 0

)
for |x| ≥ 1,

(3.9)

and smoothly glued together in a neighborhood of the boundary |x| = 1. Thus, the whole system is
invariant under translations in y , and within any plane { y = y0 }, the point (x, z) = (0,0) is a hyperbolic
fixed point with eigenvalues 1 and −1 in the x and z direction, respectively. The system also has a mirror
symmetry around x = 0; from now on we only consider x ≥ 0.

x

y

z

x=1 x=3

Figure 3.4: perturbation of a normally hyperbolic system in unbounded geometry.

3Measuring the C 1 size with respect to g requires taking covariant derivatives and may introduce results not directly
apparent in coordinates (x,θ). A perturbation term θ̇ = ε exp(x) would still be globally small in this metric.
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The plane M = { z = 0} is a NHIM; it is clearly invariant under the flow, and similar to the exponentially
shrinking cylinder, the metric contracts in the z direction along solution curves x → ∞, while no
contraction occurs along the manifold. On TM the metric reduces to g |TM = dx2 +dy2 while the flow is
linear in time. On a neighborhood of the y-axis, finally, normal hyperbolicity follows from the attraction
along the z directions due to the term −arctan(z) in (3.9).

The vector field v and its covariant derivative are uniformly bounded with respect to the metric. For
x ≤ 2, this follows from the fact that g including its inverse and derivatives, as well as v and its derivatives
are bounded. For x ≥ 2, explicit calculations in local coordinates show that ‖v‖ = 1, while we have

∇v =

0 0 0
0 − x z

1+(x z)2 −arctan(x z) 0

0 0 −1

 ,

expressed in an orthonormal frame, which is bounded as well. The second covariant derivative ∇2v
is unbounded, though. This indicates that ∇v is probably not uniformly continuous for a reasonable
definition of uniform continuity, cf. Definition 2.9, although I have not completely investigated this
question.

The Ricci scalar curvature of Q is unbounded and on M = { z = 0} it is given by

S =−2
(
1+x4 e2x)

.

Clearly, this implies that the Riemannian curvature is unbounded too.

Remark 3.11. In hindsight, it should probably not come as a complete surprise that ∇2v is unbounded.
The Riemannian curvature is unbounded, and since it is the generator of holonomy (see Section 2.2), it
can thus generally be expected that holonomies along infinitesimal loops act as an unbounded family
of operators on v . These are expressed in local coordinates by second covariant derivatives of v :

R(∂i ,∂ j ) v =∇∂i ∇∂ j v −∇∂ j ∇∂i v. ♦

We proceed with checking that exp: N →Q has finite injectivity radius on the normal bundle4 N of M .
Then all assumptions for persistence are fulfilled, except for bounded curvature (and uniform continuity
of ∇v). As each submanifold { y = y0 } is invariant, we can restrict our investigation to y = 0, such that
x denotes the coordinate along the base manifold of the normal bundle; let t denote the normalized
coordinate in the vertical direction. The exponential map of (x, t ) is generated by the geodesic flow as
follows: start at x with vertical unit vector and then follow a geodesic for time t . For x = 2, say, this flow
is well-defined and stays inside the region x ≥ 1 for some bounded time |t | ≤ r . The diffeomorphism
group

ϕ(x, z) = (x +ξ, z eξ) with ξ ∈R
translates along x while simultaneously scaling z, see also Remark 2.2. In the region x ≥ 1 this is an
isometry, so the exponential mapping defined for x = 2, |t | ≤ r can be isometrically mapped onto the
whole region x ≥ 2, |t | ≤ r . For x on the compact interval [0,2] the exponential map must have a finite
injectivity radius too, so there exists a global r > 0 such that exp: N≤r → Q is diffeomorphic onto its
image.

4We should actually show that the injectivity radius of Q is finite, i.e. rinj(Q) > 0, at least in a neighborhood of M . I have not
been able to do this. Finite injectivity radius of the normal bundle does allow us to construct a tubular neighborhood to model
persistent manifolds close to M , though.
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Now we add a perturbation in a similar spirit to that in Section 1.2.1: we lift M by a local, vertical
perturbation of the vector field, varying along y . In a neighborhood of the plane x = 2 we add a small
vertical component

ż = ε (2−cos(y)) exp
( −1

1− (x −2)2

)
if |x −2| ≤ 1.

In the region x ≤ 1 the flow is unmodified, so there the perturbed manifold M̃ must coincide with the
original M ; otherwise it would not stay in a bounded neighborhood of M under the backward flow.
Around x = 2, the flow lifts M̃ to at least a height

z ≥ ε
∫ 3

1
exp

( −1

1− (x −2)2

)
dx ≥ ε/4

and the height z depends on y , see Figure 3.5. Then in the region x ≥ 3 the manifold M̃ continues along
ẋ = 1 at the same y, z coordinates. Now we have ε/4 ≤ z ≤ 6ε, so for all small ε> 0 the y component of the
metric along the flow on the invariant manifold eventually shrinks at an exponential rate that is stronger
than in the z direction, while M̃ has variable height z(y) independent of x. Hence the Lipschitz norm
of M̃ can be estimated by measuring z ′(y) with respect to the metric g along the manifold. But z ′(y)
is nonzero and constant along x in coordinates, while horizontal distances along y shrink faster than
vertical distances. This means that the Lipschitz norm of M̃ grows unbounded for x →∞. Moreover,
the normal exponential growth rate does not dominate the tangential rate anymore, so the perturbed
manifold is not normally hyperbolic anymore. ©

x

y

z

x

yz

Figure 3.5: the graph of the perturbed manifold with respect to the Euclidean metric (top) and an approximate
image of the same graph with respect to the metric g (bottom).
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3.4 Preparation of the system

As a first step towards proving Theorem 3.2 we shall bring the system in a form suitable to apply
analytical tools to it. Let

ẋ = vX (x, y) ∈ Tx X ,

ẏ = vY (x, y) ∈ Y ,
(3.10)

be the decomposition of the vector field v along X and Y . The invariant manifold is given as the graph
M = {y = h(x)}. We dropped the explicit dependence on σ from the notation. The full flow of v will
be denoted by Υt , while Φ,Ψ are reserved for flows defined in terms of the horizontal and vertical
components of v , respectively. To shorten notation we write g (x) = (x,h(x)). We shall always assume
that ‖y‖ ≤ η.

Our goal is to establish a linearized form

vY (x, y) = A(x) y + f (x, y) (3.11)

for the vertical part of (3.10) such that f is small and A, f ∈C k,α
b,u , while the flows Φt and Ψt generated by

ẋ = vX (g (x)),

ẏ = A(x(t )) y with g (x(t )) a solution curve on M ,
(3.12)

should satisfy exponential growth estimates (1.10) as in Definition 1.8 of normal hyperbolicity with
exponents ρX , ρY close to the original −ρM , ρ−, respectively; the corresponding constants C̃M , C̃− may
differ arbitrarily from the original CM , C−.

Y

x
X
h

Tm M
m

E−
m

πE−,N

Figure 3.6: The splitting Tm(X ×Y ) = Tm M ⊕E−
m with m = g (x).

We first identify the invariant splitting and associated flows on TM (X ×Y ) to be able to relate these
exponential growth rates, see also Figure 3.6. By definition of normal hyperbolicity (without an unstable
bundle) we have

TM (X ×Y ) = TM ⊕E−, 1=πTM +πE− , DΥt = DΥt
M ⊕DΥt

−

with associated exponential growth rates (1.10). On the other hand we have the splitting

T(X ×Y ) =π∗
Y (TX )⊕π∗

X (TY ) ∼= TX × (Y ×Y )

that is naturally induced by the trivial bundle structure. The identification Dg = 1TX +Dh : TX → TM is
bounded linear with bounded inverse, so the associated vector field g∗(v) = vX ◦g on X generates a flow
Φt such that DΦt has the same exponential growth rate as DΥt

M , up to a bounded factor ‖Dg−1‖ ·‖Dg‖
due to the norms on the different tangent spaces. Recall that vσ depends on a parameter σ ∈ (0,σ0]. We
choose the bound σ1 small enough such that for all σ≤σ1 we have

∀ t ≤ 0: ‖DΦt‖ ≤ C̃M e−ρM t with C̃M = 2CM .
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Let N =π∗
X (TY )|M denote the vertical bundle over M , whose fibers can be canonically identified with Y .

Just as above, we want to project the flow DΥt− onto N while preserving the exponential growth rate. The
projection πE− along TM is uniformly bounded for all σ. This means that the angle between TM and E−

is bounded away from zero. Since TM can be chosen arbitrarily close to the horizontal TX by choosing
σ sufficiently small, it follows that the projection DπY |E− : E− → N and its inverse πE−,N are bounded
for all σ≤σ1 when σ1 is sufficiently small, see also Figure 3.6. To this end, let (0,ϕ) ∈ Tg (x)(X ×Y ) and
consider the identity

ϕ= DπY · (0,ϕ) = DπY · (πTM +πE−) · (0,ϕ).

We have πTM · (0,ϕ) ∈ TM so πTM · (0,ϕ) = (ξ,Dh(x)ξ) where ξ= DπX ·πTM · (0,ϕ) ∈ Tx X Now we have
estimates

‖ξ‖ = ‖DπX πTM (0,ϕ)‖ ≤ ‖πTM‖‖ϕ‖,

‖πTM · (0,ϕ)‖ = ‖Dh(x)ξ‖ ≤σ‖πTM‖‖ϕ‖,

‖DπY ·πE− · (0,ϕ)‖ = ‖ϕ−DπY ·πTM · (0,ϕ)‖ ≥ (1−σ‖πTM‖)‖ϕ‖
from which it follows that DπY |E− has an inverse πE−,N : N → E− for which we have the bound ‖πE−,N‖ ≤
(1−σ1 ‖πTM‖)−1 ‖πE−‖ ≤ 2‖πE−‖ if we choose σ1 ≤ 1

2‖πTM‖ .

Consider the flow
Ψ̂t = DπY ◦DΥt ◦πE−,N : N → N , (3.13)

generated by DvY ◦πE−,N along solution curves g (x(t )). Both DπY |E− and πE−,N are uniformly bounded,
so the exponential estimates of DΥt− carry over to Ψ̂t up to a constant factor:

∀ t ≥ 0: ‖Ψ̂t‖ ≤ C̃− eρ− t with C̃− = 2‖πE−‖C−. (3.14)

We have thus constructed flows Φt and Ψ̂t on X and N , respectively, that are generated by

vX ◦ g and Â(x) = DvY (g (x)) ·πE−,N (g (x))

with a solution curve x(t ) of the vector field vX ◦g inserted. These flows are of the form (3.12) and satisfy
exponential estimates (1.10) inherited from the invariant bundle splitting.

The vector field vX ◦ g already has sufficient smoothness5, but Â is not smooth enough since the
projection πE−,N is only continuous. We construct A ∈C k,α

b,u as a smoothed approximation of Dy vY ◦ g .

This term is C 0-close to Â, since

‖Â−Dy vY ◦ g‖0 = ‖(Dx vY ◦ g ) ·DπX ·πE−,N‖0 ≤ ‖Dx vY ◦ g‖0 ‖πE−,N‖0 (3.15)

because DπY ·πE−,N = 1N and ‖Dx vY ◦ g‖ is small. Lemma 3.17 will imply that the flow Ψt of this
approximation has exponential growth estimates close to those of Ψ̂t . The following lemma will
be used to obtain A from Dy vY ◦ g . We apply it with l = k − 1 to obtain A ∈ C k

b (X ;L(Y )) such that
‖A−Dy vY ◦ g‖k−1 ≤ ε(ν). This lemma is a (strongly) simplified version of Theorem 2.38; the notation of
l , k is reversed to match the context here.

Lemma 3.12 (Uniform smoothing of a vector bundle section).
Let (X , g ) be a Riemannian manifold of bounded geometry and V a Banach space. Let f ∈C l

b,u(X ;V ) be a
section of the trivial vector bundle π : X ×V → X .

Then for any k > l and ε> 0 there exists a smoothed function f̃ ∈C k
b,u(X ;V ) such that ‖ f̃ − f ‖l ≤ ε. (The

bounds on higher than l -th order derivatives will generally depend on ε.)
5It may seem impossible to define a C k vector field v on the tangent bundle TM of a C k manifold M since TM ∈ C k−1.

See [PT77, App. 1] or [PT83, p. 398] for a method to endow an invariant submanifold M ∈C k with a compatible topology that
makes v |M ∈C k . We effectively used this in our definition of vX ◦ g ∈C k .
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Proof. We apply convolution smoothing of Lemma 2.34 in each chart of a cover of X and glue these
together.

Let 0 < δ1 < δ2 < δ3 and let {B(xi ;δ2)}i≥1 be a uniformly locally finite cover of X obtained from
Lemma 2.16, such that the δ1-sized sets already cover X , and the δ3-sized sets still have normal
coordinate charts. Lemma 2.17 yields a uniform partition of unity

∑
i≥1χi subordinate to this cover.

In each chart B(xi ;δ2) we apply Lemma 2.34 to f with r = δ2 and 2δr ≤ δ3 −δ2. We obtain f̃i ∈ C k
b,u

on each chart with uniformly bounded C k -norms and ‖ f̃i − f ‖l can be made as small as required by
choosing the parameter ν small. We glue these together to one function

f̃ = ∑
i≥1

χi f̃i

defined globally on X with the functions χi ∈C k
b,u . Together with the uniform bound on the number of

charts in the cover that intersect any one point, this guarantees that f̃ satisfies estimates equivalent to
those of the f̃i . Note that ‖ f̃ ‖l does not depend on the smoothing parameter ν, but the higher derivative
norms do.

Remark 3.13 (On loss of smoothness).
We must carefully construct the system (3.11) in order not to lose one degree of smoothness, while at
the same time retaining exponential growth rates and proximity estimates.

The invariant complementary bundle E− is only continuous, while the normal bundle of M is only
C k−1, even if disguised in coordinate expressions. We use the linearization at y = 0, but not directly,
since Dy vy ( · ,0) ∈C k−1,α

b,u artificially decreases the smoothness as well. The loss of smoothness in [Sak90]

occurs for these reasons. Note that even though we retain C k,α smoothness by a convolution smoothing,
this does not preserve higher than C k−1 bounds. This seems to be an artifact of the proof, inherent to
the partial linearization along Y .

In the proof of Theorem 3.1 we construct a smoother, approximate manifold Mσ exactly to circumvent
these problems. In the trivial bundle setting of Theorem 3.2 then, we must be careful not to pick
a representation that reintroduces this loss of smoothness. On the other hand, we do not seem
to obtain optimal results in the sense that we require ‖h‖2 small, while the classical results in the
compact case only require M = Graph(h) ∈C 1. Similarly, h ∈C k

b with k ≥ 3 is assumed in [Sak90, p. 50],
while hypothesis H2 in [BLZ99, p. 987] is imposed to bound ‘twisting’ of the invariant manifold. This
requirement seems closely related to our condition on h, and is necessary for the same reason as in
our Theorem 3.1: to construct a tubular neighborhood of uniform size. I do not know whether these
stronger assumptions can be weakened or removed. ♦
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3.5 Growth estimates for the perturbed system

We shall finally put all the ingredients together to obtain exponential growth estimates for perturbed
flows contained in the tubular neighborhood ‖y‖ ≤ η of X ×Y . We write the perturbed vector field ṽ on
X ×Y as

ẋ = ṽX (x, y),

ẏ = ṽY (x, y) = A(x) y + f̃ (x, y),

where f̃ (x, y) = f (x, y)+ (
ṽY (x, y)− vY (x, y)

)
.

(3.16)

Let us assume that the conditions of Theorem 3.2 hold true. First, if ρM = 0, then for any fixed r we
can always slightly increase6 to ρM > 0, such that the growth rates (1.10) and spectral gap condition
ρ− <−r ρM still hold true; this way, we get rid of degenerate exponentials in integrals. We have some
‘spectral space’ ∆ρ = r ρM −ρ− > 0 that we use to define modified exponential growth numbers

ρX =−ρM − ∆ρ

4
, CX = 2C̃M ,

ρY = ρ−+ ∆ρ

4
, CY = C̃−.

(3.17)

This allows us to get all perturbed flows within these slightly modified growth rates, while we reserve
another ∆ρ/2 spectral space for later use, such as proving (higher order) differentiability. Note that both
ρY , ρX are negative since we focus on the stable normal bundle.

We first fix some notation to be used throughout the proof:

• Cv denotes the global C k,α bound on v and ṽ .

• ε(ν) denotes the perturbation size in Lemma 3.12 depending on the smoothing convolution pa-
rameter ν from Lemma 2.34, while Cv (ν) denotes the C k,α bound on A, f̃ , which may grow due to
smoothing when ν→ 0. We also have ‖A‖k−1,‖ f̃ ‖k−1 ≤Cv .

• ζ denotes a small bound both on the derivative of f̃ and on perturbations of the horizontal vector
field on X , that is, we impose bounds

sup
x∈X‖y‖≤η

‖D f̃ (x, y)‖ ≤ ζ and sup
x∈X‖y‖≤η

‖ṽX (x, y)− vX (x,h(x))‖ ≤ ζ,

and the size of ζ will be controlled by δ, σ1, ν, and η.

Let us point out here that multiple parameters must be chosen small, some dependent on other small
parameters. The following graph shows all dependencies; an arrow indicates that the choice of a
parameter influences the choice of the object pointed to.

δ σ1 ν

η

OO <<
55

bb ζoo

bb OO ::

OO (β,T )oo

ii
dd OO

::

other (small) constants and bounds

(3.18)

6We have ρM ≥ 0 from (1.10). Note that we are interested in −ρM for the stable side of the spectrum. In the rest of this
chapter, all exponential rates will be negative.
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The constants and bounds include (3.17) and Cv , and are all fixed. Note that there are no circular
dependencies, so we are free to choose any of these parameters smaller if necessary without the risk of
having unsatisfiable constraints.

By invariance of M = {y = h(x)} we have

vY (x,h(x)) = dy

dt
= Dh(x) · vX (x,h(x)). (3.19)

This can be used to estimate ‖vY (x,h(x))‖ ≤σ1 Cv and derived estimates, such as (taking the derivative
with respect to x)

‖Dx vY ◦ g‖ ≤ ‖Dy vY ‖‖Dh‖+‖D2h‖‖vY ◦ g‖
+‖Dh‖(‖Dx vX ◦ g‖+‖Dy vX ◦ g‖‖Dh‖)≤ 4Cv σ1

(3.20)

where σ1 ≤ 1 has been assumed. Together with previous estimates, this leads to

‖ f (x,0)‖ = ‖vY (x,0)− A(x) ·0‖
≤ ‖Dh(x)‖‖vX ◦ g‖0 ≤σ1 Cv ,

‖Dx f (x, y)‖ = ‖Dx vY (x, y)−DA(x) y‖
≤ ‖Dx vY (x, y)−Dx vY (x,h(x))‖+‖Dx vY ◦ g‖0

+
(
‖D(A−Dy vY ◦ g )‖0 +‖Dx Dy vY ‖0

)
‖y‖

≤ εDx vY (η+σ1)+4Cv σ1 +
(
ε(ν)+Cv

)
η,

‖Dy f (x, y)‖ = ‖Dy vY (x, y)− A(x)‖
≤ ‖Dy vY (x, y)−Dy vY (x,h(x))‖+‖Dy vY ◦ g − A‖0

≤ εDy vY (η+σ1)+ε(ν),

‖ṽX (x, y)− vX (x,h(x))‖ ≤ ‖ṽX (x, y)− vX (x, y)‖+‖vX (x, y)− vX (x,h(x))‖
≤ δ+εvX (η+σ1).

Hence, ‖ f ( · ,0)‖0 can be made small independently of η, while ‖ f ‖1, ‖ṽX ( · , y)− vX ◦ g‖0 ≤ ζ can be
obtained for any ζ > 0 depending on δ, η, σ1, ε(ν), and the continuity moduli εDvY , εvX . So if we set

ζ= 5Cv σ1 +2εDvY (η+σ1)+ (
ε(ν)+Cv

)
η+ε(ν)+εvX (η+σ1)+δ, (3.21)

then ‖ f ‖1, ‖ṽX ( · , y)− vX ◦ g‖0 ≤ ζ hold and ζ is small when δ, σ1, ν, η are.

We need the following result to control the C k−1 distance of the perturbed manifold M̃ to M .

Proposition 3.14. For any ε> 0, the nonlinearity f̃ and its partial derivatives with respect to x ∈ X can
be bounded as

∀ 0 ≤ i ≤ k −1: ‖Di
x f̃ ‖ ≤ ε (3.22)

by choosing η, ν, σ1, ‖h‖k , and ‖ṽ − v‖k−1 small enough.

The idea of the proof is the following. If M is described exactly by h(x) ≡ 0, then by invariance we
have vY (x,0) ≡ 0 (cf. (3.19)), hence Di

x vY (x,0) ≡ 0 as well. We adapt the proof to incorporate small
perturbations introduced by the nonzero function h and the convolution smoothing of A.
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Proof. Note that f̃ is defined by (3.16) and (3.11) as

f̃ (x, y) = vY (x, y)− A(x) · y + [
ṽY (x, y)− vY (x, y)

]
, (3.23)

where A is defined as a convolution smoothing of Dy vY ◦g such that ‖A−Dy vY ◦g‖k−1 ≤ ε(ν). The term
in brackets obviously becomes small when ‖ṽ − v‖k−1 does. For the second term note that ‖y‖ ≤ η,
while ‖A‖k−1 is bounded close to ‖Dy vY ◦g‖k−1, which in turn can be estimated by ‖Dy vY ‖k−1 ≤Cv and
‖h‖k−1 after application of Proposition C.3.

For the first term in (3.23) we use the continuity modulus of Di
x vY to estimate

‖Di
x vY (x, y)‖ ≤ ‖Di

x vY (x,h(x))‖+εDi
x vY

(‖y −h(x)‖),

while ‖y −h(x)‖ ≤ η+σ1. We insert (3.19) and apply Proposition C.3 another time to obtain

Di
x vY (x,h(x)) = Di

x

[
Dh(x) · vX (x,h(x))

]− ∑
l≥0,m≥1
l+m≤i

Dl
x Dm

y vY (x,h(x)) ·Pm,i−l
(
D•h(x)

)
.

This expression can be made small since ‖Dl
x Dm

y vY ‖ ≤Cv and each term contains at least one factor
D j h(x) for some 0 ≤ j ≤ k.

Remark 3.15. Note that we cannot improve the result to a C k size estimate, since ‖A‖k ≤C (ν) may grow
with ν→ 0, while compensating this by choosing η smaller would introduce a circular dependency
in (3.18). ♦

As the next step, we will derive exponential growth estimates for the perturbed system (3.16). More
generally, we consider the horizontal flow Φy and vertical, linear flow Ψx generated by

ẋ = ṽX (x, y), (3.24a)

ẏ = A(x) y, (3.24b)

with specific curves y : I → Y and x : I → X substituted, respectively. The following series of lemmas and
propositions show that these flows are small perturbations of the flows of (3.12) and satisfy exponential
growth rates (3.17). We prove the nonlinear case on X and the linear case on Y separately, since we use
C 1 smoothness for the nonlinear case, while only continuity can be assumed for the linear case.

Lemma 3.16 (Growth estimates for a perturbed system).
Let X be a Riemannian manifold and let the system ẋ = v(t , x) with v, Dx v ∈ C 0

b have flow Φ with
exponential growth estimate

∀ x0 ∈ X , t ≤ t0 : ‖DΦ(t , t0, x0)‖ ≤C eρ(t−t0). (3.25)

Let ṽ = v + r be a perturbed system generating a flow Φ̃. For each ρ̃ < ρ and C̃ >C , there exists a δ> 0,
such that if ‖r‖0, ‖Dx r‖0 < δ, then Φ̃ satisfies the growth estimate (3.25) with ρ̃ and C̃ inserted.

Note that this lemma is formulated in backward time.

Proof. Choose T > 0 sufficiently large such that C̃ eρ(−T ) ≤ e ρ̃(−T ). By continuous dependence of
the solutions of differential equations on parameters (see Theorem A.6 and Remark A.7), a C 1 small
perturbation r results in a C 1 small perturbed flow Φ̃ on compact time intervals −T ≤ t − t0 ≤ 0. This
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result is uniform in t0, t when v,r ∈C 1
b , where differentiation is understood with respect to x only. Hence

we obtain
sup
x0∈X

−T≤t−t0≤0

∥∥DΦ̃(t , t0, x0)
∥∥e−ρ(t−t0) ≤ C̃

if δ is chosen sufficiently small. Writing t − t0 = −(n T + τ) with n ∈ N, τ ∈ [0,T ), we use the group
property of the flow to obtain∥∥DΦ̃(t , t0, x0)

∥∥≤ (
C̃ eρ(−T ))n

C̃ eρ(−τ) ≤ e ρ̃n(−T ) C̃ eρ(−τ) ≤ C̃ e ρ̃(t−t0).

Lemma 3.17 (Perturbation of linear flow).
Let Y be a Banach space and let A ∈C 0

b

(
R;L(Y )

)
generate a flow Ψ(t , t0) with growth estimate

∀ t ≥ t0 : ‖Ψ(t , t0)‖ ≤C eρ(t−t0). (3.26)

Let ρ̃ > ρ be given and set δ= ρ̃−ρ
C > 0. If B ∈C 0

b

(
R;L(Y )

)
is globally bounded by δ, then the flow Ψ̃(t , t0)

of Ã(t ) = A(t )+B(t ) satisfies (3.26) with ρ̃ inserted.

Proof. The variation of constants integral equation for Ψ̃ is

Ψ̃(t , t0) =Ψ(t , t0)+
∫ t

t0

Ψ(t ,τ)B(τ)Ψ̃(τ, t0) dτ. (3.27)

We shall prove the estimate for Ψ̃ with an approach inspired by Gronwall’s lemma. Note that our
variation of constants formula (3.26) is slightly different from the standard context of Gronwall’s lemma,
since we do not have a bound for A.

We denote byψ(t , t0) =C eρ(t−t0) the bound onΨ. Now ψ̃(t , t0) =C e ρ̃(t−t0) satisfies the integral equation

ψ̃(t , t0) =ψ(t , t0)+
∫ t

t0

ψ(t ,τ)δψ̃(τ, t0) dτ (3.28)

when δC = ρ̃−ρ. We verify this by calculating the right-hand side:

C eρ(t−t0) +
∫ t

t0

C eρ(t−τ)δC e ρ̃(τ−t0) dτ

=C eρ(t−t0)
[

1+δC
∫ t

t0

e(ρ̃−ρ)(τ−t0) dτ
]

=C eρ(t−t0)
[

1+ δC

ρ̃−ρ
(
e(ρ̃−ρ)(t−t0) −1

)]
=C eρ(t−t0) e(ρ̃−ρ)(t−t0)

=C e ρ̃(t−t0).

Next, we prove by contradiction that ∥∥Ψ̃(t , t0)
∥∥≤ ψ̃(t , t0).

Thus, let
t1 = inf

{
t ∈R ∣∣ t ≥ t0 and ‖Ψ̃(t , t0)‖ > ψ̃(t , t0)

}
.

Note that Ψ̃ is the solution of a differential equation, hence continuous. We write
∥∥Ψ̃(t , t0)

∥∥= ψ̃(t , t0)+
f (t), so we may assume that f (t) ≤ 0 for t ∈ [t0, t1], but there exist t ∈ (t1, t2] arbitrary close to t1 such
that f (t ) > 0. Let f |[t1,t2] attain its supremum at t , thus we have

sup
[t1,t ]

f = f (t ) > 0.
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We insert these estimates into the integral equality (3.27) and obtain

∥∥Ψ̃(t , t0)
∥∥= ψ̃(t , t0)+ f (t ) ≤ψ(t , t0)+

∫ t

t0

ψ(t ,τ)δ
(
ψ̃(τ, t0)+ f (τ)

)
dτ

≤ ψ̃(t , t0)+
∫ t

t1

ψ(t ,τ)δ f (τ) dτ

≤ ψ̃(t , t0)+ (t1 − t )δ sup
τ∈[t1,t ]

ψ(t ,τ) sup
[t1,t ]

f ,

where we used that ψ̃(t , t0) satisfies (3.28) and that f |[t0,t1] ≤ 0. Now we choose t2 and therefore t
sufficiently small that (t − t1)δ supτ∈[t1,t ] ψ(t ,τ) ≤ q < 1, which leads to the contradiction

f (t ) ≤ q sup
[t1,t ]

f < f (t ).

Proposition 3.18 (Perturbation of X -flow estimate).
If δ, η, σ1 are sufficiently small, then the flow of (3.24a) satisfies the modified exponential growth

estimates (3.17) for any y ∈ Bη(R;Y ) inserted.

Here Bη(R;Y ) denotes the closed ball of radius η in the space of bounded continuous functions R→
Y .

Proof. Define the non-autonomous system v(t , x) = ṽX (t , x, y(t )). This system is a C 1 small perturbation
of (vX ◦ g )(x), uniformly in t :

‖v(t , x)− (vX ◦ g )(x)‖ ≤ ‖ṽX (x, y(t ))− vX (x, y(t ))‖+‖vX (x, (t ))− vX (x,h(x))‖
≤ δ+εDv (η+σ1),

‖Dx v(t , x)−D(vX ◦ g )(x)‖ ≤ ‖Dx ṽX (x, y(t ))−Dx vX (x, y(t ))‖
+‖Dx vX (x, y(t ))−Dx vX (x,h(x))‖

≤ δ+εDv (η+σ1),

where εDv denotes the uniform continuity modulus of v and its first derivative, which can be made
small by choice of η, σ1. We apply Lemma 3.16 to obtain exponential growth numbers CX , ρX for (3.24a)
by choosing δ+εDv (η+σ1) sufficiently small.

The following definition and lemma for flows on X are again formulated in backward time, similar to
Lemma 3.16.

Definition 3.19 (Approximate solution).
Let X be a Riemannian manifold and v(t , x) a time-dependent vector field on X . We call a continuous
curve x : R→ X a (β,T )-approximate solution of v if for each interval [t2, t1] ⊂ R with t1 − t2 ≤ T and
associated exact solution curve ξ of v with initial condition ξ(t1) = x(t1), it holds that

sup
t2≤t≤t1

d(x(t ),ξ(t )) <β. (3.29)

It would have been easier to define approximate solutions as C 1 curves x such that ‖ẋ(t )−v(t , x(t ))‖ <β.
We shall want to work with C 0-norms, though, and C 1 curves do not form a complete space under
such norms. We use this continuous curve definition to avoid any complications associated with non-
completeness. We still have the following result, as a discretized variant on variation by constants
estimates.
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Lemma 3.20 (Growth of approximate solutions).
Let X be a Riemannian manifold, v(t , x) a time-dependent vector field on X , and x a (β,T )-approximate
solution of v. Assume that v generates a flow Φt ,t0 that satisfies the exponential growth estimate (3.25)
with C ≥ 1, ρ < 0. Let ξ0 denote the exact solution of v with initial condition ξ0(0) = x(0).

Then the distance dρ(x,ξ0) is finite on the interval (−∞,0], and explicitly bounded by

dρ(x,ξ0) ≤β
(
1+ C

1−eρT

)
. (3.30)

Proof. Let ξi with i ∈ N be the associated exact solutions of x that satisfy (3.29) on the interval

[−(i +1)T,−i T ]. We have d
(
ξi (−(i + 1)T ),ξi+1(−(i + 1)T )

) < β. Hence, dρ(ξi ,ξi+1) < βC eρ(i+1)T on
the interval (−∞, (i +1)T ] by the exponential growth estimate.

Thus on each interval [−(i +1)T,−i T ] we can use the triangle inequality to estimate

dρ(x,ξ0) ≤ dρ(x,ξi )+
i−1∑
j=0

dρ(ξ j ,ξ j+1)

<βeρ i T +
i−1∑
j=0

βC eρ( j+1)T

≤β
(
1+ C

1−eρT

)
.

The union of all such intervals is (−∞,0] hence (3.30) follows.

Proposition 3.21 (Perturbation of Y -flow estimate).
Let x be a (β,T )-approximate solution to vX ◦ g . If T is sufficiently large and σ1, ν, β are sufficiently
small, then the flow Ψx of A(x(t)) has exponentially bounded growth as specified in (3.17), that is,
‖Ψx (t , t0)‖ ≤CY eρY (t−t0) for all t ≥ t0.

Proof. Let ρ̃ = 1
2 (ρ−+ρY ) < ρY and choose T > 0 sufficiently large that C̃− e ρ̃T ≤ eρY T . Let xi be an

exact solution to vX ◦ g such that supt∈[ti ,ti+T ] d(x(t ), xi (t )) ≤β per Definition 3.19, hence the flow Ψ̂ of
Â(xi (t )) satisfies (3.14), that is, ‖Ψ̂t‖ ≤ C̃− eρ− t . We decompose A(x(t )) = Â(xi (t ))+B(t ) and estimate

‖B(t )‖ = ∥∥A(x(t ))− Â(xi (t ))
∥∥

≤ ∥∥A(x(t ))− A(xi (t ))
∥∥+∥∥A(xi (t ))− (Dy vY ◦ g )(xi (t ))

∥∥
+∥∥(Dy vY ◦ g )(xi (t ))− Â(xi (t ))

∥∥
≤ ‖DA‖d(x(t ), xi (t ))+ε(ν)+4Cv σ1 2‖πE−‖.

Note that ‖A‖1 is bounded close to ‖Dy vY ‖1 ≤Cv , and (3.15) and (3.20) were used to estimate the third
term. We thus have ‖B(t )‖ ≤ δ for any δ> 0 when σ1, ν, β are sufficiently small. Hence by Lemma 3.17,
we have ‖Ψx (τ,τ0)‖ ≤ C̃− e ρ̃(τ−τ0) for any τ,τ0 ∈ [ti , ti +T ].

Now we cover the interval [t0, t ] by intervals [t0 + (i −1)T, t0 + i T ] with corresponding exact solutions xi

that approximate x. As in the proof of Lemma 3.16, we write t − t0 = n T +τ and use the group property
of the flow to obtain

‖Ψx (t , t0)‖ ≤ (
C̃− e ρ̃T )n

C̃− e ρ̃ τ ≤ eρY n T C̃− eρY τ = C̃− eρY (t−t0).

We note that CY = C̃− to complete the proof.

Using these results, we choose T sufficiently large and δ, η, σ1, β, ν sufficiently small that the modified
flows DΦy ,Ψx satisfy exponential growth rates (3.17) when curves y ∈ Bη(R;Y ) and (β,T )-approximate
solutions x ∈C 0(R; X ) are inserted.
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Lemma 3.22 (Variation of linear flow).
Let X be a metric space and Y a Banach space and let A ∈Cα

b,u(X ;L(Y )) be a family of linear operators on
Y that depends uniformly α-Hölder continuous on x ∈ X , with Hölder coefficient Cα and 0 <α≤ 1. Let
Ψx denote the flow of A under a curve x ∈C (I ; X ), and assume that it satisfies the exponential growth
condition (3.26).

Then the variation of the flow satisfies the Hölder-like estimate

‖(Ψ1 −Ψ2)(t ,τ)‖ ≤ CαC 2

−αρ eρ(t−τ) dρ(x1, x2)α eαρτ (3.31)

when dρ(x1, x2) is finite.

Proof. Let dρ(x1, x2) be finite, let Ψ1,Ψ2 be the associated flows of A and denote Υ=Ψ1 −Ψ2. We have
for Υ the differential equation

d

dt
Υ(t ,τ) = A(x1(t ))Υ(t ,τ)+ [

A(x1(t ))− A(x2(t ))
]
Ψ2(t ,τ), Υ(t , t ) = 0.

By variation of constants we obtain

‖Υ(t ,τ)‖ ≤
∫ t

τ
‖Ψ1(t ,σ)‖Cαd(x1(σ), x2(σ))α ‖Ψ2(σ,τ)‖ dσ

≤CαC 2 eρ(t−τ)
∫ t

τ
dρ(x1, x2)α eαρσ dσ

≤ CαC 2

−αρ eρ(t−τ) dρ(x1, x2)α eαρτ.

3.6 Existence and Lipschitz regularity

We start with proving Lipschitz estimates for two mappings onto curves in X ,Y , respectively. These
mappings will be combined to a contraction mapping T . Its fixed points parametrized by x0 ∈ X will
correspond to the unique solution curves of the modified system (3.16) that stay bounded.

Let Bρ(I ;Y ) denote the Banach space of exponentially bounded, continuous curves in Y on the interval
I = (−∞,0] and recall that in this chapter we always assume ρ < 0. Additionally, we denote by Bρ

η (I ;Y ) =
Bρ(I ;Y )∩Bη(I ;Y ) the subset of curves y(t ) which are moreover globally smaller than η. The closure of
Bρ
η (I ;Y ) is given by Bρ

η (I ;Y ) = Bρ(I ;Y )∩Bη(I ;Y ).

Proposition 3.23. The space Bρ
η (I ;Y ) is a closed subspace of the Banach space Bρ(I ;Y ), hence a complete

metric space.

Proof. Consider the evaluation mapping evt : Bρ(I ;Y ) → Y : y 7→ y(t). For each fixed t ∈ I this is a
continuous mapping as ‖y(t )‖ ≤ ‖y‖ρ eρ t with eρ t a finite number.

Let R = B(0;η) be the closed ball in Y , then we have

Bρ
η (I ;Y ) = ⋂

t∈I
ev−1

t (R)

as an intersection of closed preimages under evt , hence closed.
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For curves x(t) in X , we cannot construct a similar space Bρ(I ; X ) as X is not a normed linear space.
Instead we construct a (not necessarily complete) metric space. Let Bρ(I ; X ) = (

C 0(I ; X ),dρ
)

denote
the space of continuous curves equipped with the metric (1.17) (which is allowed to take the value
∞) and let Bρ

β
(I ; X ) be the subset of curves x ∈C 0(I ; X ) that are (β,T )-approximate solutions to vX ◦ g

according to Definition 3.19. We suppress the dependence on T from the notation (note that T in the
equation below is a completely different object); both β and T were fixed once and for all to fulfill
the requirements of Proposition 3.21, we keep just the subscript β as a reminder and to distinguish
from the space Bρ(I ; X ). Let ρ < ρX . Then exact solutions of vX ◦ g have finite dρ distance on I , and by
Lemma 3.20 the distance of any two curves x1, x2 ∈Bρ

β
(I ; X ) is finite, too.

We write T = TY ◦
(
TX , pr1

)
with

T : Bρ
η (I ;Y )×X → Bρ

η (I ;Y ),

TX : Bρ
η (I ;Y )×X →Bρ

β
(I ; X ),

TY : Bρ
β

(I ; X )×Bρ
η (I ;Y ) → Bρ

η (I ;Y ) ⊂ Bρ
η (I ;Y ),

(3.32)

for any ρY < ρ < ρX . The map TX is defined by the flow Φy of ṽX ( · , y(t )) with initial value x0 ∈ X , that is,

TX (y, x0)(t ) =Φy (t ,0, x0). (3.33)

In [Hen81], the TY part of the contraction operator is indirectly defined by another contraction. Instead,
here, we will set up TY as a direct mapping

TY (x, y)(t ) =
∫ t

−∞
Ψx (t ,τ) f̃ (x(τ), y(τ)) dτ, (3.34)

where Ψx is the flow of A(x(t)). This should ease proving smoothness properties of T , which will
subsequently imply smoothness of the invariant manifold.

Remark 3.24. Note that Bρ
β

(I ; X ) is not a Banach space or even a complete metric space. It will only

appear as an intermediate space in the composition T = TY ◦
(
TX , pr1

)
though, so this does not affect the

Banach fixed point arguments, as long as the mappings TX ,TY compose to a contraction T on Bρ
η (I ;Y )

uniformly in the parameter x0 ∈ X . ♦

The following two propositions show that the maps TX , TY do indeed map into their specified codomains,
when parameters are chosen sufficiently small.

Proposition 3.25. If ζ is chosen such that (3.36) holds and δ, σ1 are sufficiently small, then TY maps into
Bη(I ;Y ).

Proof. The conditions of Proposition 3.21 are satisfied for any x ∈ Bρ
β

(I ; X ), so the flow Ψx of sys-
tem (3.24b) satisfies exponential growth estimates with numbers ρY , CY .

Now, TY maps into Bη(I ;Y ) since∥∥TY (x, y)(t )
∥∥≤

∫ t

−∞
‖Ψ(t ,τ)‖(‖ f̃ (x(τ),0)‖+‖Dy f̃ ‖‖y(τ)‖) dτ

≤ CY

−ρY

(Cv σ1 +δ+ζη)
(3.35)

which can be made smaller than η by choosing ζ such that

CY ζ

−ρY

≤ 1

2
(3.36)

holds, as well as δ, σ1 sufficiently small.
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This shows that TY is well-defined in (3.32) after choosing ζ, δ, σ1 possibly smaller. Note that the
choice of ζ does not depend on any of the other small bounds. Similarly, we verify that TX maps into
Bρ
β

(I ; X ).

Proposition 3.26. If δ, σ1, and η are chosen sufficiently small, then TX maps into Bρ
β

(I ; X ).

Proof. Let y ∈ Bρ
η (I ;Y ) and x0 ∈ X . The curve x = TX (y, x0) is generated by the vector field ṽX ( · , y(t))

which is a small perturbation of vX ◦ g , since

‖ṽX ( · , y(t ))− vX ◦ g‖0 ≤ ζ.

Let t2 − t1 ≤ T and let Φt denote the flow of vX ◦ g . We apply the nonlinear variation of constants
estimate (E.2) and obtain for t ∈ [t1, t2]

d
(
x(t ),Φt−t2 (x(t2))

)≤ ∫ t2

t
‖DΦt−τ(x(τ))‖ζ dτ

≤
∫ t2

t
CX eρX (t−τ) ζ dτ

≤ CX ζ

−ρX

eρX (t−t2).

Thus, if we choose ζ sufficiently small that

CX ζ

−ρX

eρX T <β, (3.37)

then x is (β,T )-approximated by the exact solution Φt ,t2 (x(t2)) on the interval [t1, t2] so x ∈Bρ
β

(I ; X ).

The basic argument for the Perron method is encoded in the following lemma: a y-bounded solution
curve of the system (3.16) is equivalent to y ∈ Bη(I ;Y ) being a fixed point of T , while this map T will be
shown to be a contraction.

Lemma 3.27 (Cotton–Perron).
Let x ∈C (I ; X ), y ∈ Bη(I ;Y ) bounded, and x0 ∈ X . Then the following statements are equivalent:

i. the pair (x, y) is a solution curve for the modified system (3.16) with partial initial condition x(0) = x0;

ii. y ∈ Bη(I ;Y ) is a fixed point of T ( · , x0) and x = TX (y, x0).

Proof. The proof goes along the same lines as the classical Perron method for hyperbolic fixed points.
As an intermediate step, we introduce the operator

T̂Y (x, y, t0)(t ) =Ψx (t , t0) y(t0)+
∫ t

t0

Ψx (t ,τ) f̃ (x(τ), y(τ)) dτ (3.38)

and the following statement that is equivalent to those in the lemma:

iii. the pair (x, y) is a fixed point of (TX , T̂Y ) for each t0 ∈ (−∞,0].

Equivalence of i and iii (with t0 = 0) is a direct consequence of equivalence of differential and integral
equations; the equation for y has been rewritten as a variation of constants integral with respect to the
nonlinear term f̃ . If (x, y) is a fixed point of (TX , T̂Y ) for t0 = 0, then this holds for any t0 ∈ (−∞,0]. Note
that the initial value for y is left unspecified in both statements.
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We finish by proving the implications iii ⇒ ii ⇒ i . For the first we take the limit t0 →−∞ in T̂Y (x, y, t0).
Since Ψx decays exponentially and y is bounded, it follows that this limit is well-defined:

∀ t ∈ I : lim
t0→−∞ T̂Y (x, y, t0)(t ) = TY (x, y)(t ).

Hence, a fixed point of (TX , T̂Y ) is a fixed point of (TX , TY ). The last implication can readily be verified by
calculating the time derivatives of x = TX (y, x0) and y = TY (x, y) to show that (x, y) is a solution of (3.16)
with x(0) = x0.

Next, we prove that both TX , TY are Lipschitz, while the Lipschitz constant of TY can be made arbitrarily
small.

Lemma 3.28. Let ρY < ρ ≤ ρX and 0 < qY < 1. If ζ is sufficiently small, then Lip(TY ) ≤ qY .

Proof. Let (xi , yi ), i = 1,2 be curves from Bρ
β

(I ; X )×Bρ
η (I ;Y ). Let Ψi be the corresponding flows of A

along the curves xi . Then the application of Lemma 3.22 in the Lipschitz case α= 1 leads to a Lipschitz
estimate on TY for any ρY < ρ ≤ ρX :

‖TY (x1, y1)(t )−TY (x2, y2)(t )‖

≤
∫ t

−∞
‖Ψ1(t ,τ) f̃ (x1(τ), y1(τ))−Ψ2(t ,τ) f̃ (x2(τ), y2(τ))‖ dτ

≤
∫ t

−∞
‖Ψ1(t ,τ)−Ψ2(t ,τ)‖‖ f̃ (x1(τ), y1(τ))‖

+‖Ψ2(t ,τ)‖‖ f̃ (x1(τ), y1(τ))− f̃ (x2(τ), y2(τ))‖ dτ

≤
∫ t

−∞
Cv C 2

Y

−ρ eρY (t−τ) dρ(x1, x2)eρτ ‖ f̃ ‖0

+CY eρY (t−τ)‖D f̃ ‖0
(
dρ(x1, x2)+‖y1 − y2‖ρ

)
eρτ dτ

≤ ζC
(
dρ(x1, x2)+‖y1 − y2‖ρ

)
eρ t .

Here C < ∞ depends only on the constants and additional integration factors (ρ−ρY )−1 in the last
integral, hence ζC ≤ qY when ζ is small enough.

Lemma 3.29. Let ρY < ρ < ρX . If ζ, η are sufficiently small, then Lip(TX ) ≤ qX for some qX > 1 indepen-
dent of all small parameters.

Proof. Let ξ1,ξ2 ∈ X and y1, y2 ∈ Bρ
η (I ;Y ). For i = 1,2, define vi (t , ·) = ṽX ( · , yi (t)) and let xi ∈C 1(I ; X )

be a solution of the system vi with initial condition ξi . We compare the systems v1, v2:

‖v1(t , · )− v2(t , · )‖ ≤ ‖Dy ṽX‖‖y1(t )− y2(t )‖ ≤Cv ‖y1(t )− y2(t )‖.

The flow Φy1 has exponential growth numbers ρX , CX . We view v2 as a small perturbation of v1 and
apply the nonlinear variation of constants estimate (E.2) to obtain

d(x1(t ), x2(t )) ≤CX eρX t d(ξ1,ξ2)+
∫ 0

t
CX eρX (t−τ) Cv ‖y1(τ)− y2(τ)‖ dτ

≤CX eρX t d(ξ1,ξ2)+CX Cv ‖y1 − y2‖ρ
∫ 0

t
eρX (t−τ) eρτ dτ

≤CX eρX t d(x1, x ′
2)+ CX Cv

ρX −ρ
‖y1 − y2‖ρ eρX t .
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Now

dρ
(
TX (y1,ξ1),TX (y2,ξ2)

)≤ sup
t≤0

CX d(ξ1,ξ2)e(ρX −ρ) t + CX Cv

ρX −ρ
‖y1 − y2‖ρ e(ρX −ρ) t

≤CX d(ξ1,ξ2)+ CX Cv

ρX −ρ
‖y1 − y2‖ρ

exhibits a Lipschitz constant qX for TX that does not depend on any of the small parameters.

Proposition 3.30 (Extension of solution is bounded in Y ).
Let (x, y)(t) be a solution of the perturbed system (3.16) satisfying y ∈ Bη(I ;Y ) for t ≤ 0. For ζ, δ, σ1

sufficiently small, the forward extension to t ≥ 0 has y ∈ Bη(R;Y ).

Proof. First of all, choose ζ, δ, σ1 sufficiently small such that by (3.35), we have y ∈ Bη/2(I ;Y ). Proceed-
ing by contradiction, let t0 be the first time after which y(t ) becomes larger than η, thus

t0 = sup {t ∈R | ∀ τ≤ t : ‖y(τ)‖ ≤ η}.

The curve x(t ) is a (β,T )-approximate solution to vX ◦g on the interval (−∞, t0], so from Proposition 3.25
we conclude that y ∈ Bη/2

(
(−∞, t0];Y

)
. The continuity of y contradicts the assumption that t0 is the

supremum.

Completing the proof of existence and Lipschitz regularity

We finally put things together and prove that a unique persistent manifold M̃ exists and that it is
Lipschitz.

Since TX satisfies a fixed Lipschitz estimate, we can choose ζ small enough to obtain qX ·qY < 1. Thus,
T is a contraction on Bρ

η (I ;Y ) for each fixed ρY < ρ < ρX ; ζ will depend on ρ though. According to
Proposition 3.23, Bρ

η (I ;Y ) is a complete metric space, so the Banach fixed point theorem shows that
there is a unique y ∈ Bρ

η (I ;Y ) fixed point of T ; it holds moreover that y ∈ Bρ
η (I ;Y ). This contraction also

depends (uniformly) on the parameter x0 ∈ X , hence we obtain a fixed point map

Θ∞ : X → Bρ
η (I ;Y ), (3.39)

satisfying the relation
∀ x0 ∈ X : Θ∞(x0) = T (Θ∞(x0), x0). (3.40)

The superscript ∞ indicates that this map is obtained as a limit of applying the uniform contraction T .
The parameter dependence in T is Lipschitz, so the map Θ∞ will be Lipschitz as well.

By Proposition 3.30, the fixed point y =Θ∞(x0) is bounded by η for all time and Bη(I ;Y ) = Bρ
η (I ;Y ) as

sets, so y is the unique η-bounded solution with partial initial data x(0) = x0. In combination with the
evaluation map y 7→ y(0), we obtain the mapping

h̃ : X → B(0;η) ⊂ Y : x0 7→Θ∞(x0)(0). (3.41)

Its graph M̃ = Graph(h̃) is the unique invariant manifold of the modified system (3.16) and is Lipschitz
as well.

Since both M and M̃ are described by graphs of small functions X → Y , it follows that they are homeo-
morphic and ‖h̃‖0 ≤ η. We can choose another, arbitrarily small η′ instead. This requires us to choose
smaller δ′, σ′

1 parameters as well. But as can be seen from (3.18), η does not depend on δ, σ1, so the
newly found ‖h̃′‖0 ≤ η′ will actually be unique in the original η-sized neighborhood as well.
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3.7 Smoothness

To study smoothness of Θ∞, we can formally differentiate the fixed point relation (3.40) with respect to
x0 to obtain contractive mappings T (k) for the k-th order derivatives of maps Θ and then apply the fiber
contraction theorem, see Appendix D. If we assume that Θ satisfies (3.40), then Proposition C.3 shows
that (at least formally)

DkΘ(x0) = ∑
l ,m≥0

l+m≤k
(l ,m)6=(0,0)

Dl
y Dm

x0
T (Θ(x0), x0) ·Pl ,k−m

(
D•Θ(x0)

)
, (3.42)

which can be rewritten as a fiber contraction map on DkΘ by isolating that term (l = 1, m = 0) on the
right-hand side as

DkΘ(x0) = Dy T (Θ(x0), x0) ·DkΘ(x0)+ . . .

All the remaining terms are expressions in the lower order derivatives DnΘ(x0) for n < k only; these
form the base space in the fiber contraction theorem.

The derivatives DkΘ and Dl
y Dm

x0
T in (3.42) do not exist on the space Bρ

η (I ;Y ) as codomain, however.
Indeed, if they did, we could have applied the implicit function theorem right away. Instead, the
derivatives DkΘ are only well-defined on spaces7 B kρ+µ(I ;Y ), where µ < 0 is an arbitrarily small
additional exponential growth rate. Derivatives of the maps TX , TY do not exist at all. By using the
fiber contraction theorem and interpreting the Dk TX , Dk TY as ‘formal derivatives’ in some appropriate
way, we can still show, though, that the DkΘ are higher derivatives of Θ that converge to the derivatives
of Θ∞ under iteration of the fiber contraction maps (3.42). The gap condition ρY < r ρX will show up
in the requirement that (3.42) is contractive for k ≤ r (and finally k +α≤ r when considering Hölder
continuity). In case of uniform continuity (i.e. when α= 0) we make use of the strict inequality to seize
some of the spectral space left for the terms µ< 0.

The interpretation of DT and its constituents DTX and DTY as true derivatives is obstructed already by
the fact that neither Bρ

η (I ;Y ) nor Bρ
β

(I ; X ) are smooth Banach manifolds8, hence these can never be the
(co)domain of differentiable maps. Thus, the chain rule

DΘn+1 = Dy T ·DΘn +Dx0 T

cannot be used to conclude the existence of DΘn+1 from DΘn by induction. On the other hand, we
can find ‘formal tangent bundles’ of these spaces on which DTX ,DTY are defined as ‘formal derivatives’,
and we even have explicit formulas (3.43) for these maps. From here on we shall use the notation D˜ f
to indicate a formal derivative and D f to indicate that a function f is truly differentiable. We shall
not make precise the notion of ‘formal’, but heuristically these formal objects can be seen as limits of
well-defined real smooth manifolds and derivatives, see Section 3.7.7.

First, we outline the procedure of obtaining Θ∞ as a truly differentiable map by careful manipulation of
these formal derivatives. This is followed by the details of working out the definitions and estimates.
Finally, we show how everything generalizes to higher derivatives. This last step adds more complexity,
but requires no fundamentally new ideas.

Higher derivatives of functions involving variables or values in X need to be treated with some care,
as these are not naturally defined. In such expressions, the derivatives are with respect to normal

7Note that the spaces Bkρ+µ(I ;Y ) are to be understood as the codomains of the maps Θ, hence the DkΘ as multilinear
operators into these. The spaces Yη play the same role in [Van89, Def. 3.10].

8At least, they are not smooth Banach manifolds in a natural way, see the discussion in Section 3.7.4.
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coordinates at the base point in domain and range, according to Definition C.6. I should point the
reader to Appendix C: it establishes the essential basic ingredient for this section on (higher) smoothness,
namely how exponential growth estimates carry over to continuity and higher derivatives of the flow.
Additionally, building on bounded geometry and Definition 2.9, a framework is set up to work with
these notions on the manifold X .

3.7.1 A scheme to obtain the first derivative

The map T is not differentiable. Instead, we shall use the scheme below to obtain differentiability of
Θ∞. The sequence {Θn}n≥0 of maps X → Bρ

η (I ;Y ) is defined by Θn+1(x0) = T (Θn(x0), x0) and Θ0 ≡ 0.
We prove the differentiability of the Θn by induction and finally conclude that Θ∞ is differentiable as
well.

i. First, we propose candidate formal derivatives (3.43) of TX ,TY . These are obtained naturally by
standard differentiation and variational techniques, postponing for the moment the question of
which spaces these maps are well-defined on. We define D˜ T in terms of the formal derivatives D˜ TX

and D˜ TY .

ii. The pair (T,D˜ T ) acts as a uniform fiber contraction on pairs of maps

(Θn ,D˜Θn) : TX → Bρ
η (I ;Y )×Bρ+µ(I ;Y )

when ρY < ρ+µ≤ ρ < ρX holds, both in case of µ= 0 and µ< 0 small.

iii. There are appropriate formal tangent bundles of the spaces Bρ
η (I ;Y ), Bρ

β
(I ; X ) on which these

formal derivatives are well-defined. Moreover, these formal tangent bundles can be endowed with
a topology such that D˜ TX , D˜ TY , and D˜ T are uniformly continuous into bundles with slightly larger
exponential growth rate ρ+µ. Under appropriate assumptions (and with µ= αρ) these formal
derivatives are α-Hölder continuous.

iv. The fiber contraction theorem D.1 can be applied. It follows from ii that D˜ T has a unique fixed
point D˜Θ∞ : TX → T˜Bρ

η (I ;Y ), and from iii that the map

Θ 7→ D˜ T (Θ) ·D˜Θ∞ : C 0(X ;Bρ
η (I ;Y )

)→ Γb
(
L

(
TX ;T˜Bρ+µ

η (I ;Y )
))

into bounded sections of the bundle π : L
(
TX ;T˜Bρ+µ

η (I ;Y )
)→ X is continuous. Thus we can con-

clude that D˜Θn converges in Γb
(
L

(
TX ;Bρ+µ(I ;Y )

))
to the unique fixed point D˜Θ∞, simultaneously

with Θn → Θ∞. See (3.45) and (3.47) for precise definitions of these spaces. Moreover, D˜Θ∞ is
uniformly or Hölder continuous.

v. There is a family of maps, given by restricting the domain I of curves,

T b,a : Bρ
η ([a,0];Y )×X → Bρ

η ([b,0];Y )

that approximate T , and moreover these T b,a are differentiable maps between Banach manifolds
whose derivatives DT b,a approximate the formal derivative D˜ T .

vi. With the continuous embedding Bρ(I ;Y ) ,→ Bρ+µ(I ;Y ) and the previous point, we show that if
Θn : X → Bρ+µ(I ;Y ) is differentiable, then

D˜Θn+1 = D˜ y T ·DΘn +D˜ x0 T

is the derivative of Θn+1 : X → Bρ+µ(I ;Y ).
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vii. Finally, we use Theorem D.2 to conclude that since the sequence Θn converges to Θ∞ and its
derivatives satisfy DΘn → D˜Θ∞, it must hold that DΘ∞ = D˜Θ∞ as a map into Bρ+µ(I ;Y ).

In the subsequent sections we shall work out the details of this scheme. With some care, the same ideas
generalize to higher derivatives.

3.7.2 Candidate formal derivatives

We first explicitly give the candidate mappings for the derivatives of TX ,TY . From now on, we will use
shorthand notation xy (t) = TX (y, x0)(t) =Φy (t ,0, x0). The spaces that these maps act on will be made
more precise in the following sections; δx, δy denote variations of curves x ∈Bρ

β
(I ; X ) and y ∈ Bρ

η (I ;Y ),
respectively, and δx0 ∈ Tx0 X .(

D˜ x0 TX (y, x0)δx0
)
(t ) = DΦy (t ,0, x0) ·δx0 (3.43a)(

D˜ y TX (y, x0)δy
)
(t ) =

∫ 0

t
DΦy (t ,τ, xy (τ))Dy ṽX (xy (τ), y(τ))δy(τ) dτ, (3.43b)

(
D˜ x TY (x, y)δx

)
(t ) =

∫ t

−∞
Ψx (t ,τ)Dx f̃ (x(τ), y(τ))δx(τ) (3.43c)

+ (
D˜ xΨx ·δx

)
(t ,τ) f̃ (x(τ), y(τ)) dτ,(

D˜ y TY (x, y)δy
)
(t ) =

∫ t

−∞
Ψx (t ,τ)Dy f̃ (x(τ), y(τ))δy(τ) dτ, (3.43d)

(
D˜ xΨx ·δx

)
(t ,τ) =

∫ t

τ
Ψx (t ,σ)DA(x(σ))δx(σ)Ψx (σ,τ) dσ. (3.43e)

The correctness of these expressions pointwise in t can be checked by variation of constants and follows
from Theorem E.2. Note also that the expressions above are linear in the variations δx, δy, δx0. The
map (3.43e) is only included in the list for its occurrence in (3.43c).

3.7.3 Uniformly contractive fiber maps

We establish uniform boundedness of the formal derivative maps (3.43) as linear operators on δx, δy ,
and δx0. The estimates are straightforward generalizations of those in Section 3.6. The operator norms
are induced by ‖·‖ρ norms. We have the following list of estimates:

‖D˜ x0 TX (y, x0)‖ = sup
t∈I

‖δx0‖=1

∥∥DΦy (t ,0, x0)δx0
∥∥e−ρ t ≤ sup

t∈I
CX eρX t e−ρ t ≤CX ,

‖D˜ y TX (y, x0)‖ ≤ sup
t∈I

‖δy‖ρ=1

∫ 0

t
‖DΦy (t ,τ, xy (τ))Dy ṽX (xy (τ), y(τ))δy(τ)‖ dτ ·e−ρ t

≤ sup
t∈I

∫ 0

t
CX eρX (t−τ) Cv eρ(τ−t ) dτ≤ CX Cv

ρX −ρ
,

‖D˜ y TY (x, y)‖ ≤ sup
t∈I

‖δy‖ρ=1

∫ t

−∞
‖Ψx (t ,τ)Dy f̃ (x(τ), y(τ))δy(τ)‖ dτ ·e−ρ t

≤ sup
t∈I

∫ t

−∞
CY eρY (t−τ) ζeρ(τ−t ) dτ≤ CY ζ

ρ−ρY

,
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‖(D˜ xΨx ·δx
)
(t ,τ)‖ ≤

∫ t

τ
‖Ψx (t ,σ)DA(x(σ))δx(σ)Ψx (σ,τ)‖ dσ

≤
∫ t

τ
CY eρY (t−σ) Cv ‖δx‖ρ eρσCY eρY (σ−τ) dσ

≤ C 2
Y Cv

−ρ ‖δx‖ρ eρY (t−τ) eρ t ,

‖D˜ x TY (x, y)‖ ≤ sup
t∈I

‖δx‖ρ=1

∫ t

−∞

[
‖Ψx (t ,τ)Dx f̃ (x(τ), y(τ))δx(τ)‖

+‖(D˜ xΨx ·δx
)
(t ,τ) f̃ (x(τ), y(τ))‖

]
dτ ·e−ρ t

≤ sup
t∈I

∫ t

−∞
CY eρY (t−τ) ζeρτ+ C 2

Y Cv ζ

−ρ eρY (t−τ) eρ t dτ ·e−ρ t

≤ CY ζ

ρ−ρY

+ C 2
Y Cv ζ

ρ ·ρY

.

These estimates show that
D˜ y T = D˜ x TY ·D˜ y TX +D˜ y TY ,

D˜ x0 T = D˜ x TY ·D˜ x0 TX

(3.44)

are bounded linear maps when ρY < ρ < ρX . Since we have some spectral elbow room, we can first
choose a value for ρ and then choose µ< 0 sufficiently close to zero, such that this inequality holds both
for ρ and ρ+µ. If ζ is sufficiently small, then ‖D˜ y T ‖ ≤ q < 1 can be satisfied. This shows that (T,D˜ T )
is a uniform fiber contraction on δy ∈ Bρ+µ(I ;Y ) over base curves y ∈ Bρ

η (I ;Y ), and with additional
parameter x0 ∈ X . It can also be viewed as a fiber mapping of maps D˜Θ over base maps Θ. Let us define

S0 =C 0(X ;Bρ
η (I ;Y )

)
and Sµ1 = Γb

(
L

(
TX ;Bρ+µ(I ;Y )

))
, (3.45)

where S0 is equipped with the supremum norm and Sµ1 is interpreted as bounded sections of the
bounded geometry bundle over X of linear maps between TX and the trivial bundle π : X ×Bρ+µ(I ;Y ) →
X , equipped with the (supremum/operator) norm

‖D˜Θ‖ = sup
x0∈X

‖D˜Θ(x0)‖L(Tx0 X ;Bρ+µ(I ;Y )).

Then (T,D˜ T ) can also be viewed as a fiber mapping

(T,D˜ T ) : S0 ×Sµ1 →S0 ×Sµ1 ,

(Θ,D˜Θ) 7→
(
(x0,δx0) 7→ (

T (Θ(x0), x0),[
D˜ y T (Θ(x0), x0) ·D˜Θ(x0)+D˜ x0 T (Θ(x0), x0)

] ·δx0
))

.

(3.46)

As such, it is again a uniform fiber contraction since the contraction was uniform in y and x0 to begin
with, and the supremum norm does not affect the contraction factor q < 1.

3.7.4 Formal tangent bundles

Derivatives of the maps TX , TY should be defined between tangent bundles of the spaces Bρ
η (I ;Y ) and

Bρ
β

(I ; X ). This is problematic for both spaces: Bρ
η (I ;Y ) is a subspace of the Banach space Bρ(I ;Y ), but it
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has empty interior. The restriction to (β,T )-approximate solutions of vX ◦ g creates a similar problem
for Bρ

β
(I ; X ), but here, construction of the tangent bundle faces an additional obstruction. There is

no clear way to define local coordinates around a solution curve x. The obvious method would be by
constructing a tubular neighborhood of x and represent nearby curves x̃ in the tubular neighborhood.
But the metric on Bρ

β
(I ; X ) allows x̃ to diverge exponentially from x even if dρ(x, x̃) is small. Thus the

tubular neighborhood would need to be of infinite size to contain x̃(t) for all t ∈ I , which is generally
not possible. Since any finite-size tubular neighborhood does not contain a full neighborhood of the
curve x, we cannot use local coordinates to define tangent spaces.

Instead, we shall construct formal tangent bundles. These are just convenient spaces to model variations
of curves on; they are natural extensions of true Banach tangent spaces, see Section 3.7.7. The primary
role of these bundles is to introduce a topology that allows us to show that D˜ T is uniformly or Hölder
continuous.

A formal tangent bundle of Bρ
η (I ;Y ) can be constructed rather easily: Bρ(I ;Y ) is a Banach space, so its

tangent bundle is canonically identified as TBρ(I ;Y ) = Bρ(I ;Y )×Bρ(I ;Y ). We then define the formal
tangent bundle of Bρ

η (I ;Y ) by restricting the base:

T˜Bρ
η (I ;Y ) = TBρ(I ;Y )|Bρ

η (I ;Y )
∼= Bρ

η (I ;Y )×Bρ(I ;Y ) (3.47)

with induced topology and norm.

To define a formal tangent bundle of Bρ
β

(I ; X ), we consider variations δx of a curve x as sections of a
pullback bundle: δx ∈ Γ(x∗(TX )). That is, δx ∈ C (I ;TX ) is such that δx(t) ∈ Tx(t )X for each t ∈ I . We
equip this space with the norm that is natural for our problem, namely

‖δx‖ρ = sup
t∈I

‖δx(t )‖e−ρ t ,

and denote it by Bρ(I ; x∗(TX )) = (
Γ(x∗(TX )),‖·‖ρ

)
. The curves δx ∈ Bρ(I ; x∗(TX )) form the formal

tangent space over one curve x ∈Bρ
β

(I ; X ). The complete formal tangent bundle is then defined as the

coproduct over all curves x ∈Bρ
β

(I ; X ),

T˜Bρβ(I ; X ) = ∐
x∈Bρ

β
(I ;X )

Bρ(I ; x∗(TX )). (3.48)

A curve δx lives above a specific base curve x, so there is no direct way of comparing two curves δx1, δx2

with different base curves x1, x2; (3.48) was constructed as a coproduct without topological structure. We
add a topology based on parallel transport. This requires the base curves x ∈Bρ

β
(I ; X ) to be differentiable,

so we consider the bundle

T˜Bρβ(I ; X )
∣∣
C 1 (3.49)

restricted to differentiable9 base curves x ∈ Bρ
β

(I ; X )∩C 1. Variational curves δx ∈ Bρ(I ; x∗(TX )) are

isometrically mapped onto curves δ̃x ∈ Bρ(I ;Tx(0)X ) = (
C 0(I ;Tx(0)X ),‖·‖ρ

)
by

Π̃x : δx 7→ δ̃x, δ̃x(t ) =Π(x|t0)−1δx(t ). (3.50)

9This does not cause problems since TX actually maps into curves x ∈C 1. The fiber contraction theorem only requires that
the base space has a globally attractive fixed point. Since the fixed point is a C 1 curve, we can simply restrict to this subset of
curves.
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Let the normal coordinate radius δX be X -small as in Definition 2.8. If we now restrict all base curves x
under consideration to a small neighborhood

Ux = {
x ∈Bρ

β
(I ; X )∩C 1

∣∣ x(0) ∈ B(x;δX )
}
, (3.51)

i.e., the curves x that start in the open ball B(x;δX ) ⊂ X , then there exists a unique shortest geodesic
γx,x(0) from x(0) to x for each x ∈Ux . Parallel transport along these geodesics induces a local trivializa-
tion10 of TB(x;δX ). This in turn induces a local trivialization of T˜Bρβ(I ; X )

∣∣
C 1 :

T˜Bρβ(I ; X )|Ux

π

��

τx // Ux ×Bρ(I ;Tx X )

p1

{{
Bρ
β

(I ; X )|C 1 ⊃Ux

(3.52)

The trivialization map is given by τx (x,δx) = (
x,Π(γx,x(0)) ◦ Π̃x (δx)

)
. The transition maps between

overlapping local trivializations Ux1 ∩Ux2 6= ; are induced by transition functions

ϕ2,1 :
(
B(x2;δX )∩B(x1;δX )

)×Tx2 X → Tx1 X : (ξ,ν) 7→Π(γx2,ξ ◦γξ,x1 ) ·ν

between local trivializations of TB(xi ;δX ). The map ϕ2,1 is uniformly Lipschitz by Lemma 2.6 and linear
in the fiber. This induces a Lipschitz continuous transition function τx2

◦τ−1
x1

that depends on the base
curve x ∈Ux1 ∩Ux2 only through x(0) ∈ X ; this dependence is uniform since X has bounded geometry.
Thus the bundle satisfies Definition 2.14, and the order of bounded geometry is actually equal to k −2
when X has k-th order bounded geometry.

We endow the bundle T˜Bρβ(I ; X )
∣∣
C 1 with the topology induced by these local trivializations. Note that

this topology is induced by a locally defined distance function, so we can express uniform and Hölder
continuity of maps on T˜Bρβ(I ; X )

∣∣
C 1 . That is, if (x1,δx1) and (x2,δx2) are elements of T˜Bρβ(I ; X )

∣∣
C 1 such

that dρ(x1, x2) < δX , then the topology is induced by the locally defined distance function

d
(
(x1,δx1), (x2,δx2)

)= dρ(x2, x1)+‖Π(γx1(0),x2(0))Π̃x2 (δx2)− Π̃x1 (δx1)‖ρ . (3.53)

The transition functions τx2
◦τ−1

x1
are uniformly Lipschitz, so they preserve uniform and Hölder continuity

moduli up to a constant. Therefore, overlapping trivializations define the same topology on their
intersection, with compatible local distances. To summarize, we have

Proposition 3.31. The spaces T˜Bρ
η (I ;Y ) and T˜Bρβ(I ; X )

∣∣
C 1 are well-defined normed vector bundles of

bounded geometry, and they have a (local) distance structure.

The topologies introduced above allow us to express uniform and Hölder continuity of the maps (3.43).
The topology on T˜Bρ

η (I ;Y ) is clear and explicit from the topology on Bρ(I ;Y ). For T˜Bρβ(I ; X )
∣∣
C 1 let

x ∈Bρ
β

(I ; X )∩C 1 be a curve and δx ∈ Bρ(I ; x∗(TX )) a variational curve at x. The topology is induced by
the isometric representation

δ̃x =Π(γx,x(0)) · Π̃x ·δx ∈ Bρ(I ;Tx X )

10We make the specific choice to trivialize TB(x;δX ) by parallel transport along geodesics. Any other trivialization with
uniformly bounded transition maps would also suffice for our purposes and induce a trivialization of T˜Bρβ(I ; X )|Ux

(see also

the alternative viewpoint on this trivialization below). This explicit choice is somewhat natural in this context, though, and it
shows that a trivialization with these properties does exist.
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of δx. Uniform continuity of maps (3.43) that have T˜Bρβ(I ; X )
∣∣
C 1 as (co)domain can thus be checked by

switching to a local trivialization, that is, substitute

δx(t ) =Π(x|t0) ·Π(γx(0),x ) · δ̃x(t )

and then use the known topology on Ux×Bρ(I ;Tx X ). In explicit calculations of continuity with respect to
the base Bρ

β
(I ; X )∩C 1, we shall thus add parallel transport terms such as those above to the maps (3.43)

and let these act on δ̃x ∈ Bρ(I ;Tx X ).

Alternative viewpoints

Instead of the immediate trivialization (3.52) of the bundle T˜Bρβ(I ; X )
∣∣
C 1 , we can also introduce an

intermediate viewpoint that corresponds to only applying the parallel transport term Π̃x , but not
Π(γx,x(0)) in the local neighborhood B(x;δX ). We view ev0 : Bρ

β
(I ; X ) → X as a bundle; this identifies

T˜Bρβ(I ; X )
∣∣
C 1 as a bundle over X as well, via ev0 ◦π. Let Bρ(I ;TX )X denote the space of (continuous,

exponential growth) functions δ̃x : I → TX such that π◦ δ̃x is constant into X , viewed as a bundle over X .

T˜Bρβ(I ; X )
∣∣
C 1

π

��

Π̃ // Bρ
β

(I ; X )|C 1 ×X Bρ(I ;TX )X

p1
zz

evt◦p2

zz
Bρ
β

(I ; X )|C 1

ev0

��

TX

π

yy
X

(3.54)

This commutative diagram shows that T˜Bρβ(I ; X )
∣∣
C 1 can be identified via Π̃with the fiber product bundle

Bρ
β

(I ; X )|C 1 ×X Bρ(I ;TX )X over X . This identification is natural in the sense that no local trivialization
of X or TX is used. The second component Bρ(I ;TX )X of this bundle contains the variational curves
δ̃x. This is a (nontrivial) bundle over X , but its projection onto the base π◦evt : Bρ(I ;TX )X → X factors
through TX . The fact that π◦evt is constant for t ∈ I simply expresses that each δ̃x ∈ Bρ(I ;TX )X maps
into a fixed tangent space TξX . This shows that a local trivialization σ : TX |B(x;δX ) → B(x;δX )×Rn

naturally lifts to a local trivialization

σ̃ : Bρ(I ;TX )|B(x;δX ) → B(x;δX )×Bρ(I ;Rn).

We have chosen local trivializations of TX by parallel transport along geodesics, i.e. Π(γx,ξ), since
this construction is compatible with the bounded geometry of X in the sense that trivialization chart
transitions are C k

b maps by Proposition 2.13.

We also introduce a reformulation of the topology on T˜Bρβ(I ; X )
∣∣
C 1 using frames, as an alternative to the

explicit formulation in terms of parallel transport above. This allows us to abstract away these ideas into
a lighter notation in the next section and only recall the full details when required.



96 CHAPTER 3. PERSISTENCE OF NONCOMPACT NHIMS

Let ex : Rn → Tx X be a choice11 of orthonormal frame at x ∈ X . We can extend this to an orthonormal
frame e on TB(x;δX ) by parallel transport of the frame ex along geodesics emanating from x. As a second
step, we further extend the frame e along any curve x ∈Ux , again by parallel transport12.

We adopt the notation v f = f −1 · v to express a vector v ∈ Tx X with respect to a frame f at x, and use
this notation more generally on the tensor bundle of X . Now let v be a vector field and ω a one-form on
X , then the construction of e above leads to

v(x(t ))e = e−1
x ·Π(γx,x(0)) ·Π(x|0t ) · v(x(t )),

ω(x(t ))e =ω(x(t )) ·Π(x|t0) ·Π(γx(0),x ) ·ex ,
(3.55)

and naturally extends to the tensor bundle of X .

3.7.5 Continuity of the fiber maps

We prove the uniform and Hölder continuous dependence on x, y , and x0 of the maps (3.43) using a
combination of techniques. One is the variation of constants formula to get expressions for the variation
of flows when changing a parameter. Such variations require us to compare the variational curves over
different base curves; for this, we use the topologies of the formal tangent bundles in Section 3.7.4,
while we measure the variation of vector fields with the formulation of continuity via parallel transport
in Proposition 2.13. Together these lead to holonomy terms along the base paths (see Figure 3.7), in
addition to the variation of constants terms that would simply occur in Rn . These holonomy terms can
be estimated with Lemma 2.19 and do not essentially alter the estimates.

γt

x2(t )

x
γ0

x1(t )

Figure 3.7: Paths involved in the holonomy term.

We use Nemytskii operator techniques as laid out in Appendix B to conclude that functions such as
A and f can be interpreted as uniformly continuous maps onto curves with some µ< 0 exponential
growth norm. Instead of uniform continuity, we can also obtain Hölder continuity if the original maps
are Hölder continuous and if we view the Nemytskii operator as a mapping into a space with norm
‖·‖αρ . In other words, we replace the uniform continuity modulus by the explicit α-Hölder continuity
modulus. Hölder continuity precisely fits the problem, so in that case there is no need anymore to add a
small µ< 0 to the exponential growth norms.

11The precise choice does not matter and will drop out in the final, relevant equations. The relative choice of frame along
curves is what matters.

12Note that e does not define a (global) frame on TX . The choice of frame at x(t ) depends not just on the point x(t ) ∈ X , but
on the whole curve x ∈Bρ

β
(I ; X )|C 1 . Another curve x̃ with x(t ) = x̃(t ) will generally induce a different frame in Tx(t ) X .
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One example in full detail

As an example, let us consider continuity of the map (3.43c) with respect to x ∈ Bρ
β

(I ; X ), that is, x 7→
D˜ x TY (x, y). To be able to explicitly use the topology on T˜Bρβ(I ; X )

∣∣
C 1 , we switch to a local trivialization

neighborhood Ux 3 x1, x2 as in (3.51). We choose x = x1(0) to simplify expressions; any other choice for
x can be obtained by a transition of trivialization charts. Let δ̃x ∈ Bρ(I ;Tx X ) be the representation of an
arbitrary variational curve in the fiber of this trivialization.

Note that (3.43c) is defined in terms of (3.43e). We estimate continuity of the separate components and
build towards the full expression. Let us first focus on the continuity of x 7→Ψx (t ,τ), which is a map
Bρ
β

(I ; X ) →L(Y ) for fixed t , τ ∈ I .

Proposition 3.32. For any µ< 0, the variation

Υt ,τ =Ψx2 (t ,τ)−Ψx1 (t ,τ) (3.56)

of the linear flow Ψx on Y satisfies continuity estimate (3.57).

Proof. We extend the ideas from the proof of Lemma C.8. The variation Υt ,τ satisfies the differential
equation

d

dt
Υt ,τ = A(x2(t ))Ψx2 (t ,τ)− A(x1(t ))Ψx1 (t ,τ)

= A(x2(t ))Υt ,τ+ [
A(x2(t ))− A(x1(t ))

]
Ψx1 (t ,τ),

which leads to a variation of constants integral that can be estimated as

‖Υt ,τ‖ ≤
∫ t

τ
‖Ψx2 (t ,σ)‖‖A(x2(σ))− A(x1(σ))‖‖Ψx1 (σ,τ)‖ dσ

≤
∫ t

τ
CY eρY (t−σ) εÃ(dρ(x2, x1))eµσCY eρY (σ−τ) dσ

≤C 2
Y eρY (t−τ) εÃ(dρ(x2, x1))

eµτ

−µ . (3.57)

Here we use ideas from Appendix B; we applied Corollary B.3 to obtain A as a uniformly continuous
fiber mapping Bρ

β
(I ; X ) → Bµ(I ;L(Y )) with continuity modulus εÃ (that depends on µ).

Thus, the flow Ψt ,τ
x depends uniformly continuously on x ∈ Bρ

β
(I ; X ) when viewed as a flow with

ρY -exponential growth and measured with an additional exponential factor eµτ.

Remark 3.33. In the previous proposition, if A is α-Hölder continuous, then we can replace µ by αρ to
obtain a similar, α-Hölder continuous result using Lemma B.2. ♦

To show that x 7→ D˜ xΨx (t ,τ) is continuous as well, we first write down the corresponding variation in
the bundle trivialization chart:(

D˜ xΨx2 · δ̃x −D˜ xΨx1 · δ̃x
)
(t ,τ)

=
∫ t

τ
Ψx2 (t ,σ)

[
DA(x2(σ))Π(x2|σ0 )Π(γx2(0),x ) δ̃x(σ)

]
Ψx2 (t ,σ)− (2 1) dσ

=
∫ t

τ
Ψx2 (t ,σ)

[
DA(x2(σ))e δ̃x(σ)

]
Ψx2 (t ,σ)− (2 1) dσ, (3.58)
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where the notation (2 1) means that we take the first expression and replace all 2’s by 1’s (note that
γx2(0),x = γ0 in the first term andΠ(γx1(0),x ) = 1 in the second term). The last line is just a rewrite in terms
of the frame as in (3.55) and suppresses all parallel transport terms. We separately estimate continuity
of the three factors in the integrand, and insert the estimate of Proposition 3.32 for the variation Ψ• in
the first and third factor. Note that δ̃x is the same over both curves x1 and x2 in this trivialization.

For the middle factor DA(x(t))e , we again apply Nemytskii operator techniques from Appendix B.
But in this case we have to combine these with holonomy terms, due to the fact that comparison of
DA at nearby points ξ2, ξ1 ∈ X only makes sense after identification of the tangent spaces Tξ2 X and
Tξ1 X .

Proposition 3.34. Let A ∈C 1
b,u according to Definition 2.9. Then for any µ< 0, the map

x 7→ (
t 7→ DA(x(t ))e

)
: Ux ⊂Bρ

β
(I ; X ) → Bµ

(
I ;L(Tx X ;L(Y ))

)
(3.59)

is uniformly continuous. If moreover A ∈C 1,α
b,u , then the map (3.59) is α-Hölder with µ replaced by αρ.

Proof. Let x1, x2 ∈Ux . We introduce another frame f to directly compare DA at points x1(t ), x2(t ). Let
fx1(t ) = ex1(t ) : Rn → Tx1(t )X and define fx2(t ) =Π(γt ) · fx1(t ). Thus, the frames e and f at x2(t) are both
defined in terms of the frame ex ; ex2(t ) by parallel transport along x2 ◦γ0 and fx2(t ) by parallel transport
along γt ◦x1, see Figure 3.7. Since fx1(t ) = ex1(t ), we can rewrite the difference of (3.59) at points on these
curves as

DA(x2(t ))e −DA(x1(t ))e =
[
DA(x2(t ))e −DA(x2(t )) f

]+ [
DA(x2(t )) f −DA(x1(t )) f

]
.

The first term can be estimated by the holonomy defect along the loop

γ−1
0 ◦x2|0t ◦γt ◦x1|t0

using Lemma 2.19 and the second term using the continuity of DA and Proposition 2.13. Together, this
leads to

‖DA(x2(t ))e −DA(x1(t ))e‖
≤ ‖DA‖∥∥1−Π(

γ−1
0 ◦x2|0t ◦γt ◦x1|t0

)∥∥+εDA
(
d(x2(t ), x1(t ))

)
≤Cv C dρ(x2, x1)eρ t +εDA

(
d(x2(t ), x1(t ))

)
.

If dρ(x2, x1)eρ t ≥ δX , then we use the boundedness estimate ‖1−Π(γ)‖ ≤ 2 for any closed loop γ and
Remark 2.12 to effectively extend the local to a global continuity modulus. We can recover any α-Hölder
continuity from the Lipschitz holonomy estimate, again by using the fact that the holonomy is bounded
by 2 in combination with Lemma 1.20.

With the same arguments as in Lemma B.2, it follows that x 7→ (
t 7→ DA(x(t ))e

)
is uniformly or α-Hölder

continuous, and we denote its continuity modulus by εD̃A . Note that εD̃A does not depend on the
trivialization chart since all estimates are uniform with respect to these charts.

Proposition 3.35. For any µ < 0 and uniformly in x ∈ X , the map x 7→ D˜ xΨx (t ,τ) satisfies continuity
estimate (3.60) in a trivialization neighborhood Ux ⊂Bρ

β
(I ; X ).
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Proof. We combine the estimates from Propositions 3.32 and 3.34 and obtain for (3.58)∥∥∥(
D˜ xΨx2 · δ̃x −D˜ xΨx1 · δ̃x

)
(t ,τ)

∥∥∥
≤

∫ t

τ

∥∥Ψx2 (t ,σ)
[
DA(x2(σ))e δ̃x(σ)

]
Ψx2 (σ,τ)− (2 1)

∥∥ dσ

≤
∫ t

τ

(∥∥Ψx2 (t ,σ)−Ψx1 (t ,σ)
∥∥‖DA(x2(σ))e‖‖Ψx2 (σ,τ)‖

+‖Ψx1 (t ,σ)‖∥∥DA(x2(σ))e −DA(x1(σ))e
∥∥‖Ψx2 (σ,τ)‖

+‖Ψx1 (t ,σ)‖‖DA(x1(σ))e‖
∥∥Ψx2 (σ,τ)−Ψx1 (σ,τ)

∥∥)
‖δ̃x‖ρ eρσ dσ

≤
∫ t

τ

(
C 2

Y eρY (t−σ) εA(dρ(x2, x1))
eµσ

−µ Cv CY eρY (σ−τ)

+CY eρY (t−σ) εD̃A(dρ(x2, x1))eµσCY eρY (σ−τ)

+CY eρY (t−σ) Cv C 2
Y eρY (σ−τ) εA(dρ(x2, x1))

eµτ

−µ
)
‖δ̃x‖ρ eρσ dσ

≤C eρY (t−τ) ε(dρ(x2, x1))e(ρ+µ)τ ‖δ̃x‖ρ . (3.60)

We absorbed all constants and integration factors such as 1
−µ into the general constant C and combine

the continuity moduli into one; Cv is a global bound on all vector fields including A and its derivatives.

We finally plug estimate (3.60) into equation (3.43c). We repeat the Nemytskii and holonomy arguments
for f̃ and Dx f̃ (just as for A and DA) to obtain a uniform continuity estimate for

x 7→ D˜ x TY (x, y) : Ux →L
(
Bρ(I ;Tx X );Bρ+µ(I ;Y )

)
.

both for any µ < 0, or with µ = αρ when A, f ∈ C 1,α
b,u . That is, D˜ x TY ( · , y) is a map that given a curve

x ∈Bρ
β

(I ; X )|C 1 , linearly maps a variational curve δx over x to a variational curve δy in the trivial bundle

T˜Bρ
η (I ;Y ). We can formulate this more abstractly as

D˜ x TY ( · , y) ∈ Γαb,u

(
Bρ
β

(I ; X )|C 1 ;L
(
T˜Bρβ(I ; X )

∣∣
C 1 ;Bρ+µ(I ;Y )

))
,

that is, D˜ x TY ( · , y) is a uniformly α-Hölder bounded section of the bounded geometry bundle

π : L
(
T˜Bρβ(I ; X )

∣∣
C 1 ;Bρ+µ(I ;Y )

)→Bρ
β

(I ; X )|C 1 .

Continuity in the other cases

We treated the continuity for one of the maps (3.43) with respect to a single variable. The continuity
in all other cases can be shown in a similar fashion. Many arguments can be repeated, but each of
these maps also has its own peculiar details which makes that I have not been able to find one general,
abstract way to prove continuity of all of these maps at once. In this section we shall focus on these
specific details and not repeat the recurring elements. Let me reiterate that the uniform continuity
results hold for any µ< 0 sufficiently small, and these can be replaced by α-Hölder continuity when µ is
replaced by αρ and the spectral gap condition (1.11) is satisfied for r = 1+α.

First of all, note that continuity with respect to the combined variables follows directly from continuity
with respect to each separate variable since we have explicit uniform or Hölder continuity moduli. If
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f (x, y) has continuity moduli εx , εy with respect to x, y , respectively, then

‖ f (x2, y2)− f (x1, y1)‖ ≤ ‖ f (x2, y2)− f (x1, y2)‖+‖ f (x1, y2)− f (x1, y1)‖
≤ εx (d(x2, x1))+εy (d(y2, y1))

≤ (εx +εy )
(
d((x2, y2), (x1, y1))

)
shows that εx +εy is a continuity modulus for f . We assumed w.l.o.g. that εx , εy are non-decreasing,
while all choices of distance on the product space are equivalent, so we leave it unspecified.

Let us start with the easy cases. Continuity of the map (3.43c) as a function of y , that is,

y 7→ D˜ x TY (x, y) : Bρ
η (I ;Y ) →L

(
Bρ(I ; x∗(TX ));Bρ+µ(I ;Y )

)
,

requires no additional details: only f and Dx f depend on y ∈ Y , and we can reapply the arguments
above to show that these depend continuously on y ∈ Bρ

η (I ;Y ). No holonomy terms are present since
T˜Bρ

η (I ;Y ) is a trivial bundle. That is, we can directly compare D˜ x TY at different y1, y2 ∈ Bρ
η (I ;Y ); keeping

x ∈Bρ
β

(I ; X ) fixed means that everything is situated in the fixed fiber T˜ xB
ρ

β
(I ; X )|C 1 = Bρ(I ; x∗(TX )) and

no holonomy terms are required.

Continuity of the map (3.43d), i.e. D˜ y TY (x, y), both with respect to x and y follows along the same lines.
Neither case requires holonomy arguments; we just apply the Nemytskii technique to Dy f and reuse
Proposition 3.32 to show continuity with respect to x.

The formal derivatives (3.43a) and (3.43b) of TX map into T˜Bρβ(I ; X )
∣∣
C 1 ; here we have to apply holonomy

arguments in the codomain. Let us first focus on

x0 7→ D˜ x0 TX (y, x0) : X →L
(
Tx0 X ;Bρ+µ(I ;Tx X )

)
with a local trivialization Ux ×Bρ+µ(I ;Tx X ) within13 the bundle T˜Bρ+µβ

(I ; X )
∣∣
C 1 with additional µ in

the exponential growth norm on the fibers. Note that D˜ x0 TX (y, ·) could actually be considered as a
bundle map on the vector bundle TX that is linear on each tangent space Tx0 X . We consider a local
trivialization of TB(x;δX ) ⊂ TX by parallel transport along geodesics: this is equivalent to trivialization
by a normal coordinate chart for the purpose of measuring continuity, while it matches the trivialization
of T˜Bρβ(I ; X )|Ux

. This will lead to a holonomy term.

For any x0 ∈ B(x;δX ) we have TX (y, x0) ∈Ux by construction, so let e denote the frame introduced by
the trivialization of T˜Bρβ(I ; X )|Ux

, i.e. by parallel transport along solution curves TX (y, x0). On the other
hand, let f denote a frame introduced by local parallel transport. We define

fx1(t ) = ex1(t ) and fx2(t ) =Π(γt ) · fx1(t ).

It follows from Lemma C.10 that D˜ x0 TX (y, · ) = (
t 7→ DΦy (t ,0, · )) satisfies the correct type of continuity

estimates, but with respect to local charts (or equivalently, with respect to f determined by local
parallel transport) instead of the choice of frame e, defined by the topology of T˜Bρβ(I ; X )

∣∣
C 1 . To examine

the difference, let x0,1, x0,2 ∈ B(x;δX ) denote two initial conditions and xi = TX (y, x0,i ), i = 1,2, their
respective solution curves for a fixed y ∈ Bρ

η (I ;Y ). We also fix x0,1 = x for convenience. Then we

13Embeddings Bρ ,→ Bρ+µ are continuous, so we can view Ux ×Bρ+µ(I ;Tx X ) as a local trivialization of a subset of T˜Bρ
′

β
(I ; X )

with ρ′ = ρ+µ.
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have

DΦy (t ,0, x0,2)e −DΦy (t ,0, x0,1)e

= [
DΦy (t ,0, x0,2)e −DΦy (t ,0, x0,2) f

]+ [
DΦy (t ,0, x0,2) f −DΦy (t ,0, x0,1) f

]
= [

Π(γ−1
0 ◦x2|0t )−Π(x1|0t ◦γ−1

t )
] ·DΦy (t ,0, x0,2) ·Π(γ0)

+ [
DΦy (t ,0, x0,2) f −DΦy (t ,0, x0,1) f

]
.

This shows that uniform and Hölder continuity with respect to the topology of T˜Bρβ(I ; X )
∣∣
C 1 is equivalent

to the same continuity with respect to normal coordinate charts, since the additional holonomy term
can be estimated in the same way as in Proposition 3.34. Continuity of

y 7→ D˜ x0 TX (y, x0) : Bρ
η (I ;Y ) →L

(
Tx0 X ;Bρ+µ(I ;Tx X )

)
follows in the same way, if we first apply Corollary C.12 to obtain the continuity estimates with respect
to the frame f .

Finally, we consider continuity of the map (3.43b),

D˜ y TX (y, x0) ∈L
(
Bρ(I ;Y );Bρ+µ(I ;Tx X )

)
with respect to y ∈ Bρ

η (I ;Y ) and x0 ∈ X . We apply Corollary C.12 and Lemma 3.29 to conclude that
DΦy (t ,τ, xy (τ)) depends α-Hölder or uniformly continuously on y . Lemma 3.29 in combination with a
Nemytskii operator argument shows that Dy ṽX induces a uniformly continuous map

y 7→ (
t 7→ Dy ṽX (xy (t ), y(t ))

)
: Bρ

η (I ;Y ) → Bµ
(
I ;L(Y ;TX )

)
with µ replaced by αρ in the Hölder case. For continuity with respect to x0 ∈ X we need to replace
application of Corollary C.12 by that of Lemma C.10 for dependence of xy = TX (y, x0) on x0. Again the
continuity estimates obtained are with respect to the frame e and we use Lemma 2.19 to estimate the
additional holonomy term when switching to the frame f .

3.7.6 Application of the fiber contraction theorem

In Section 3.7.3 we already established that the fiber mapping (T, D˜ T ) in formula (3.46) is uniformly
contractive. With the results of the previous sections on formal tangent bundles and continuous formal
derivatives, we can now apply the fiber contraction theorem, see Appendix D.

Proposition 3.36. For any µ< 0, the fiber mapping (3.46) has a unique, globally attractive fixed point
(Θ∞, D˜Θ∞) ∈S0 ×Sµ1 , while it also holds that D˜Θ∞ ∈S0

1 .

Proof. In the notation of Theorem D.1 we take X = S0 and Y = Sµ1 as in (3.45) with ρ, µ such that
ρY < ρ+µ < ρ < ρX holds. The fiber mapping is F = (T, D˜ T ), as in (3.46). The first two conditions of
Theorem D.1 are satisfied due to the arguments in Section 3.7.3, while the third condition that D˜ T is
continuous can be obtained from the results in Section 3.7.5 as follows.

First, note that (T, D˜ T ) is a well-defined, uniformly contractive fiber mapping both when acting on
Bρ(I ;Y ) and on Bρ+µ(I ;Y ) variational curves. Thus, for each n ≥ 0 we have D˜Θn ∈ S0

1 ,→ Sµ1 , where
the embedding is continuous. The same conclusion holds for D˜Θ∞ by a simple uniform contraction
argument. Next, we view D˜ T as a map

D˜ T : S0 ×S0
1 →Sµ1 . (3.61)
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Note that we set µ= 0 in the domain only. To obtain continuity of (3.61) with respect to the base variable
Θ ∈S0, it is sufficient to check that the maps

y 7→ D˜ y T (y, x0) : Bρ
η (I ;Y ) →L

(
Bρ(I ;Y );Bρ+µ(I ;Y )

)
,

y 7→ D˜ x0 T (y, x0) : Bρ
η (I ;Y ) →L

(
Tx0 X ;Bρ+µ(I ;Y )

) (3.62)

are uniformly continuous, uniformly in x0 ∈ X . Continuity of (3.61) with respect to the base S0 (with
fixed fiber part D˜Θ ∈S0

1 ,→Sµ1 ) then follows from the interpretation of (3.62) as acting on maps (Θ,D˜Θ)
with the supremum norm on S0. The maps (3.62) are defined by the chain rule formula (3.44) in terms
of the derivative maps (3.43). A variation of y ∈ Bρ

η (I ;Y ) can be distributed over the product (we only
estimate the variation of D˜ y T with respect to y , but the variation of D˜ x0 T is completely analogous),

‖D˜ y T (y2, x0)−D˜ y T (y1, x0)‖ρ+µ,ρ

≤ ∥∥D˜ x TY (xy2 , y2) · [D˜ y TX (y2, x0)−D˜ y TX (y1, x0)
]∥∥
ρ+µ,ρ

+∥∥[
D˜ x TY (xy2 , y2)−D˜ x TY (xy1 , y1)

] ·D˜ y TX (y1, x0)
∥∥
ρ+µ,ρ

≤ ‖D˜ x TY (xy2 , y2)‖ρ+µ,ρ+µ · ‖D˜ y TX (y2, x0)−D˜ y TX (y1, x0)‖ρ+µ,ρ

+‖D˜ x TY (xy2 , y2)−D˜ x TY (xy1 , y1)‖ρ+µ,ρ · ‖D˜ y TX (y1, x0)‖ρ,ρ .

(3.63)

The ‖·‖ρ2,ρ1
denote operator norms on linear (bundle) maps from Bρ1 to Bρ2 spaces. In the factor that

is not varied we can simply take the operator norm between functions of either ρ or ρ+µ exponential
growth: in Section 3.7.3 we have seen that the fiber maps are uniformly bounded linear in both cases. The
factor that is varied satisfies a uniform continuity estimate in ‖·‖ρ+µ,ρ-norm, a result from Section 3.7.5.
Note that we use the topology defined in Section 3.7.4 on the intermediate space T˜Bρβ(I ; X )

∣∣
C 1 , as well as

a local trivialization to express the difference D˜ y TX (y2, x0)−D˜ y TX (y1, x0).

As a result of the fiber contraction theorem, we conclude that there is a unique, globally attractive fixed
point (Θ∞, D˜Θ∞) of the fiber mapping (3.46). Note that D˜Θ∞ is already well-defined as an element of
S0

1 , although it is only proven to be attractive in Sµ1 .

As a next step, we show that the fixed point map D˜Θ∞ that we found is actually continuous. This follows
from a standard uniform contraction argument.

Proposition 3.37. For any µ< 0, the map D˜Θ∞ ∈Sµ1 is uniformly continuous. If we set µ≤αρ and the
assumptions of Theorem 3.2 are satisfied with r ≥ 1+α, then it is α-Hölder continuous.

Proof. First note that it is sufficient to prove the statement for µ< 0 sufficiently small, or µ=αρ in case
of α-Hölder continuity; by continuous embedding of exponential growth spaces, it then automatically
follows for any µ that is more negative. We use local trivializations by parallel transport to express
continuity moduli of functions with domain TX .

The assumptions of Theorem 3.2 imply that the spectral gap condition ρY < ρ+µ< ρ < ρX is satisfied.
Since D˜Θ∞ is (the fiber part of) the fixed point of the uniform contraction (T, D˜ T ), we have for any two
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x1, x2 ∈ B(x;δX ) ⊂ X that

‖D˜Θ∞(x2)−D˜Θ∞(x1)‖ρ+µ
= ∥∥D˜ y T (Θ∞(x2), x2) ·D˜Θ∞(x2)+D˜ x0 T (Θ∞(x2), x2)− (2 1)

∥∥
ρ+µ

≤ ∥∥D˜ y T (Θ∞(x2), x2)−D˜ y T (Θ∞(x1), x1)
∥∥
ρ+µ,ρ · ‖D˜Θ∞(x2)‖ρ

+∥∥D˜ y T (Θ∞(x1), x1)
∥∥
ρ+µ,ρ+µ ·

∥∥D˜Θ∞(x2)−D˜Θ∞(x1)
∥∥
ρ+µ

+∥∥D˜ x0 T (Θ∞(x2), x2)−D˜ x0 T (Θ∞(x1), x1)
∥∥
ρ+µ

≤ εD˜ y T
(
(L+1)d(x2, x1)

)+q ‖D˜Θ∞(x2)−D˜Θ∞(x2)‖ρ+µ
+εD˜ x T

(
(L+1)d(x2, x1)

)
.

Here L = Lip(Θ∞) denotes the Lipschitz constant of Θ∞ ∈ S0, while q < 1 is the uniform contraction
factor of D˜ y T on the fibers of Bρ

η (I ;Y )×Bρ+µ(I ;Y ). We saw in Section 3.7.5 that the maps D˜ y T, D˜ x T have
appropriate continuity moduli into Bρ+µ(I ;Y ). Finally, we move the contraction term to the left-hand
side, divide by 1−q , and obtain

‖D˜Θ∞(x2)−D˜Θ∞(x1)‖ρ+µ ≤
1

1−q

[
εD˜ y T

(
(L+1)d(x2, x1)

)+εD˜ x T
(
(L+1)d(x2, x1)

)]
.

This shows that D˜Θ∞ ∈Sµ1 has the same type of continuity modulus as D˜ T .

3.7.7 Derivatives on Banach manifolds

We can recover the maps (3.43) as true derivatives on Banach manifolds if we restrict to bounded
time intervals J ⊂ I = R≤0. The maps TX , TY naturally restrict to such intervals, either exactly, or in a
well-behaved approximate way. By restricting to intervals J = [a,0] with a < 0, the spaces Bρ

η (J ;Y ) and
Bρ
β

(J ; X ) become Banach manifolds and the restrictions of TX , TY become continuously differentiable
maps on these.

Lemma 3.38. For any −∞< a < 0, the spaces Bρ
η (J ;Y ) and Bρ

β
(J ; X ) with J = [a,0] a bounded interval

are well-defined Banach manifolds.

Proof. We first treat the easy case Bρ
η (J ;Y ). For any −∞< a < 0, the norms ‖·‖ρ and ‖·‖0 are equivalent

on Bρ(J ;Y ). The set Bρ
η (J ;Y ) is an open ball of radius η in the Banach space B 0(J ;Y ), so it follows that

Bρ
η (J ;Y ) is a Banach manifold as an open subset of Bρ(J ;Y ).

In the same way, the metrics dρ and d0 are equivalent on Bρ(J ; X ), but here we need to do a little more
work to show the following.

Proposition 3.39. The set Bρ
β

(J ; X ) is open in Bρ(J ; X ).

Proof. Let x ∈Bρ
β

(J ; X ), hence by Definition 3.19, x is approximated on each interval of length |[t1, t2]| ≤
T by t 7→Φ(t , t2, x(t2)), where Φ denotes the flow of vX ◦ g , the horizontal part of the unperturbed vector
field (3.10). The map

(t , t2) 7→ d
(
x(t ),Φ(t , t2, x(t2))

)
is continuous, and since it is defined on a compact subset of J × J , it attains its supremum

η1 = sup
t2∈J

sup
t∈[t2−T,t2]

d
(
x(t ),Φ(t , t2, x(t2))

)
,
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so it must hold that η1 <β. Let x̃ ∈ B(x;η2) ⊂Bρ(J ; X ) with

η2 = (β−η1)
e−ρ a

1+CX eρX T
.

We apply the triangle inequality and obtain

d
(
x̃(t ),Φ(t , t2, x̃(t2))

)≤ d
(
x̃(t ), x(t )

)+d
(
x(t ),Φ(t , t2, x(t2))

)
+d

(
Φ(t , t2, x(t2)),Φ(t , t2, x̃(t2))

)
≤ eρ a η2 +η1 +CX eρX T eρ a η2

≤ (
1+CX eρX T )

eρ a η2 +η1 <β.

This shows that all functions in the ball B(x;η2) ⊂Bρ(J ; X ) are still (β,T )-approximate solutions of vX ◦g ,
and thus Bρ

β
(J ; X ) is open.

From here on we shall not always precisely distinguish between Bρ
β

(J ; X ) and Bρ(J ; X ) anymore.

We introduce a local coordinate chart κx around a curve x ∈Bρ(J ; X ) using the exponential map (see
also [Kli95, Sect. 2.3]):

κx : Ux ⊂Bρ(J ; X ) → Bρ(J ; x∗(TX )) : ξ 7→ (
t 7→ exp−1

x(t )(ξ(t ))
)
. (3.64)

The vector bundle x∗(TX ) is trivial, so the space of sections Bρ(J ; x∗(TX )) is isomorphic to Bρ(J ;Rn).
An explicit trivialization of x∗(TX ) (and thus isomorphism of sections) can be obtained, for example if
x ∈C 1, using parallel transport as in (3.50) and identification of Tx(0)X ∼=Rn by a choice of frame, but
we refrain from making such a choice here; one reason is that curves x ∈ Bρ(J ; X ) are only assumed
continuous. The chart κx bijectively covers a full rinj(X ) neighborhood of x with respect to the metric
d0, hence a neighborhood of size rinj(X )e−ρ a > 0 with respect to dρ . Recall that δX is X -small as in
Definition 2.8; let us choose a radius δa = δX e−ρ a , such that all bounded geometry results also hold true
in these induced charts κx . Then the coordinate transition map

κx2 ◦κ−1
x1

: Bρ(J ; x∗
1 (TX )) → Bρ(J ; x∗

2 (TX )) (3.65)

is a bijection between isomorphic Banach spaces that is as smooth as the exponential map of X .

Remark 3.40. We could choose isomorphisms τx : Bρ(J ; x∗(TX )) → Bρ(J ;Rn) to obtain one fixed Banach
space Bρ(J ;Rn) as model for the manifold Bρ(J ; X ). The τx are linear isometries so they preserve norms
and smoothness, hence there is no need to explicitly make this identification. Specifically, note that
the construction of Bρ(J ; x∗(TX )) as the pullback along a curve x that is merely continuous, does not
influence the smoothness of coordinate transformations on Bρ(J ; X ). ♦

We shall again call charts in this atlas ‘normal coordinate charts’, since they are induced by normal
coordinates on X along the curve x ∈Bρ(J ; X ). By construction all bounded geometry results carry over
to these induced charts. In particular, we can measure maps in terms of their coordinate representations.
We will use this fact without always explicitly mentioning it.

The tangent space of Bρ(J ; X ) at a point x can be canonically identified as

TxBρ(J ; X ) ∼= Bρ(J ; x∗(TX )) (3.66)
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as follows. Let s 7→ xs : (−ε,ε) ⊂R→Bρ(J ; X ) be a C 1 family of curves such that x0 = x and let ξs = κx (xs)
be their representation in the coordinate chart Bρ(J ; x∗(TX )). The chart κx is induced by normal
coordinates, so

dρ(x0, xs) = sup
t∈J

d(x0(t ), xs(t ))eρ t = sup
t∈J

‖exp−1
x0(t )(xs(t ))‖eρ t = ‖ξs‖ρ

shows that ‖·‖ρ is the canonical norm on the chart Bρ(J ; x∗(TX )). Then v = d
ds ξs

∣∣
s=0 represents a

tangent vector in TxBρ(J ; X ), while v ∈ Bρ(J ; x∗(TX )) by construction.

This completes our exposition of the manifold structure of Bρ(J ; X ). We shall again exclusively make
use of induced normal coordinate charts (3.64), in order to use results on bounded geometry.

The map TX can be restricted to curves on any subinterval J = [a,0] ⊂ I = R≤0. Let us introduce the
restriction operator on curves

ρa : C (I ; Z ) →C (J ; Z ) : z 7→ z|J . (3.67)

This operator acts naturally on Bρ
η (I ;Y ) and Bρ

β
(I ; X ) and there is a natural family of restrictions T a

X of
TX such that

T a
X ◦ρa = ρa ◦TX for any −∞< a < 0. (3.68)

Proposition 3.41. Let J = [a,0] with −∞< a < 0. Then

T a
X : Bρ

η (J ;Y )×X →Bρ
β

(J ; X ) (3.69)

is a differentiable map between Banach manifolds with partial derivatives given by a natural restriction
of the maps (3.43a) and (3.43b).

Proof. Let s 7→ y + s δy ∈ Bρ
η (J ;Y ) be a one-parameter family of curves and let

κx : B(x;δa) ⊂Bρ
β

(J ; X ) → Bρ(J ; x∗(TX ))

be an induced normal coordinate chart centered around the curve x = T a
X (y, x0). The map TX is Lipschitz,

so for s sufficiently small, T a
X (y + s δy, x0) maps into B(x;δa). The vector field ṽX ( · , (y + s δy)(t )) depends

smoothly on the parameter s and generates xs = T a
X (y + s δy, x0). We apply Theorem E.2 with

d

ds

[
ṽX

(
x(t ), (y + s δy)(t )

)]
s=0

= Dy ṽX (x(t ), y(t )) ·δy(t )

to obtain (3.43b) as the pointwise derivative of evt ◦T a
X , for any t ∈ J .

Now we only need to show that (3.43b) viewed as derivative pointwise in t satisfies linear approximation
estimates, uniformly for all t ∈ J with respect to dρ . We work in the local chart κx , so xs(t ) is represented
in the normal coordinate chart centered at x(t ), while the curve s 7→ y + s δy is canonically represented
in Bρ(I ;Y ) with derivative δy .

Since s 7→ (
κx ◦T a

X (y + s δy, x0)
)
(t ) ∈C 1(R;Tx(t )X ), we can apply the mean value theorem to estimate∥∥[

T a
X (y + s δy, x0)−T a

X (y, x0)−D˜ y TX (y, x0) · s δy
]
(t )

∥∥
≤ ∥∥[(

D˜ y TX (y +σt δy, x0)−D˜ y TX (y, x0)
) · s δy

]
(t )

∥∥
≤ ∥∥D˜ y TX (y +σt δy, x0)−D˜ y TX (y, x0)

∥∥‖δy‖ρ eρ t |s|
(3.70)

for some σt ∈ (0, s). Note that σt will in general depend on t ∈ J , so there is (a priori) not one curve
y +σδy such that (3.70) holds for all t ∈ J at once. In Section 3.7.5 we showed that D˜ y TX : T˜Bρ

η (I ;Y ) →
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T˜Bρ+µ(I ; X )|C 1 is continuous; on the bounded interval J the norms ‖·‖ρ and ‖·‖ρ+µ are equivalent,
so D˜ y TX is continuous into Bρ(J ; x∗(TX )) as well. Using this fact, we plug the result above into the
definition of (directional) derivative and verify

lim
s→0

1

s

∥∥T a
X (y + s δy, x0)−T a

X (y, x0)−D˜ y TX (y, x0) · s δy
∥∥
ρ

≤ lim
s→0

sup
t∈J

|s|
s

∥∥D˜ y TX (y +σt δy, x0)−D˜ y TX (y, x0)
∥∥‖δy‖ρ = 0.

Therefore, the derivative of T a
X at (y, x0) in the direction of δy is given by D˜ y TX (y, x0) ·δy restricted to

the interval J . The limit is uniform on ‖δy‖ρ = 1 and this map is continuous and linear in δy , so T a
X is

continuously partially differentiable with respect to y .

If we use a local chart around x0 ∈ X , then we find in the same way that T a
X is continuously partially

differentiable with respect to x0. Thus, T a
X is (continuously) differentiable.

The map TY does not have a similarly natural restriction since it depends on the complete ‘history’ of the
curves x, y through the integral from −∞. The dependence on earlier times is exponentially suppressed,
though. Therefore, we construct a family of restrictions that approach TY when the amount of additional
history in the input goes to infinity. Let −∞< a ≤ b < 0 and define the family Tb,a

Y of restrictions as

Tb,a
Y : Bρ

β
([a,0]; X )×Bρ

η ([a,0];Y ) → Bρ
η ([b,0];Y ),

(x, y) 7→
(
t 7→

∫ t

a
Ψx (t ,τ) f̃ (x(τ), y(τ)) dτ

)
for each t ∈ [b,0].

(3.71)

Proposition 3.42. The family T b,a
Y approximates TY in the sense that for any fixed b ∈ (−∞,0], we have

T b,a
Y ◦ρa → ρb ◦TY (3.72)

when a →−∞, uniformly in x, y ∈Bρ
β

(I ; X )×Bρ
η (I ;Y ).

Proof. This follows from straightforward estimates:

∥∥T b,a
Y ◦ρa(x, y)−ρb ◦TY (x, y)

∥∥
ρ ≤ sup

t∈[b,0]
e−ρ t

∫ a

−∞
‖Ψx (t ,τ) f̃ (x(τ), y(τ))‖ dτ

≤ sup
t∈[b,0]

e−ρ t
∫ a

−∞
CY eρY (t−τ) ζ dτ

≤ CY ζ

−ρY

eρY (b−a)−ρb .

In a same way we define approximate families for (3.43c) and (3.43d), denoted by D˜ x T b,a
Y and D˜ y T b,a

Y ,
respectively.

Corollary 3.43. The families D˜ x T b,a
Y and D˜ y T b,a

Y approximate (3.43c) and (3.43d) in the same way as in
Proposition 3.42.

Proposition 3.44. Let −∞< a ≤ b < 0. Then T b,a
Y is a differentiable map between Banach manifolds.

Proof. We shall only show that T b,a
Y is continuously partially differentiable respect to x. Continuous

partial differentiability with respect to y follows along the same lines and total differentiability then is a
direct consequence of these (also in the Banach manifold setting, see [Lan95, Prop. 3.5]).
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Let x ∈Bρ
β

(J ; X ) and y ∈ Bρ
η (J ;Y ) with J = [a,0]. Let κx be an induced normal coordinate chart around x

and let
xs = x + s δx ∈ Bρ(J ; x∗(TX ))

be a one-parameter family of curves in Bρ
β

(J ; X ), represented in the chart κx (for s sufficiently small).

Then δx ∈ Bρ(J ; x∗(TX )) is naturally identified as the derivative d
ds xs

∣∣
s=0.

We shall show that the partial derivative Dx T b,a
Y is given by the formal derivative (3.43c), but with J as

domain of integration and interpreted as a mapping into Bρ([b,0];Y ). Again, we split the full expression
into manageable pieces and apply the mean value theorem.∥∥[

T b,a
Y (xs , y)−T b,a

Y (x, y)−Dx T b,a
Y (x, y) · s δx

]
(t )

∥∥
≤

∫ t

a

∥∥Ψxs (t ,τ) f̃ (xs(τ), y(τ))−Ψx (t ,τ) f̃ (x(τ), y(τ))

−Ψx (t ,τ)Dx f̃ (x(τ), y(τ)) s δx(τ)− (D˜ xΨx · s δx)(t ,τ) f̃ (x(τ), y(τ))
∥∥ dτ

≤
∫ t

a

∥∥Ψxs (t ,τ)−Ψx (t ,τ)− (
D˜ xΨx · s δx

)
(t ,τ)

∥∥‖ f̃ (x(τ), y(τ))‖
+‖Ψx (t ,τ)‖∥∥ f̃ (xs(τ), y(τ))− f̃ (x(τ), y(τ))−Dx f̃ (x(τ), y(τ)) s δx(τ)

∥∥
+∥∥Ψxs (t ,τ)−Ψx (t ,τ)

∥∥∥∥ f̃ (xs(τ), y(τ))− f̃ (x(τ), y(τ))
∥∥ dτ

and application of Theorem E.2 shows that formula (3.43e) for D˜ xΨxs ·δx is the derivative of Ψxs . We
use this for a mean value theorem estimate14 in the first and third15 term to arrive at

≤
∫ t

a

∥∥(
D˜ xΨxσ · s δx

)
(t ,τ)− (

D˜ xΨx · s δx
)
(t ,τ)

∥∥ζ
+CY eρY (t−τ)

∥∥Dx f̃ (xσ(τ), y(τ))−Dx f̃ (x(τ), y(τ))
∥∥ |s|‖δx‖ρ eρτ

+∥∥(
D˜ xΨxσ · s δx

)
(t ,τ)

∥∥‖Dx f̃ (xσ(τ), y(τ))‖|s|‖δx‖ρ eρτ dτ

≤
∫ t

a
C eρY (t−τ) ε(|σ|‖δx‖ρ)e(ρ+µ)τ |s|‖δx‖ρ ζ
+CY eρY (t−τ) εDx f

(|σ|‖δx‖ρ eρτ
) |s|‖δx‖ρ eρτ

+ C 2
Y Cv

−ρ ‖δx‖ρ eρY (t−τ) eρ t ζ |s|‖δx‖ρ eρτ dτ.

We applied Proposition 3.35 to estimate the variation of D˜ xΨ; the induced normal coordinate charts
and Proposition 2.13 allow us to freely switch between parallel transport and normal coordinates for
estimating differences. All exponential norms are equivalent on the compact interval J , so with the
usual estimates we see that this expression is o(|s|), uniformly for all ‖δx‖ρ = 1.

We have thus converted the map T = TY ◦ (TX , pr1) to a Banach manifold setting by defining it on curves
restricted to compact time intervals. Although all estimates were already in place, this technicality
allows us to draw the conclusions of the final points vi and vii in the scheme in Section 3.7.1.

Lemma 3.45 (TheΘn have true derivatives).
Fix µ < 0 and let Θn : X → Bρ

η (I ;Y ) be differentiable into Bρ+µ(I ;Y ). Recursively define Θn+1(x0) =
T (Θn(x0), x0). Then Θn+1 is again differentiable into Bρ+µ(I ;Y ).

14The intermediate point σ in the mean value theorem implicitly depends on both t and τ and will be different in each term.
This does not affect the uniform estimates, so we suppress this dependence in the notation.

15We applied the intermediate value theorem to both factors in the third term. This is not strictly necessary: we could also
have applied it to only one of these, and apply a uniform continuity estimate to the other term. That would still have yielded
a size estimate ε(|s|) |s| = o(|s|). When we generalize to higher derivatives, we shall make use of this fact: at least one of the
factors will be differentiable and yield a factor |s|, while the other term(s) can be estimated by a continuity modulus ε(|s|).
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Proof. We define DΘn+1 ∈ S0
1 using (3.46) and proceed to show that it is the derivative of Θn+1 as a

function DΘn+1 ∈Sµ1 by a direct estimate

‖Θn+1(x0 +h)−Θn+1(x0)−DΘn+1(x0) ·h‖ρ+µ ≤ ε‖h‖,

with x0, x0 +h ∈ X represented in normal coordinate charts.

First, we use the Nemytskii operator technique to get rid of the infinite tail t →−∞. For any given ε> 0,
we have on (−∞,b] the crude estimate

sup
t≤b

∥∥[
Θn+1(x0 +h)−Θn+1(x0)−DΘn+1(x0) ·h

]
(t )

∥∥e−(ρ+µ) t

≤
(
‖Θn+1(x0 +h)−Θn+1(x0)‖ρ+‖DΘn+1(x0) ·h‖ρ

)
e−µb

≤ (
Lip(Θn+1)+‖DΘn+1‖)‖h‖e−µb ≤ ε‖h‖

for some b(ε) that is sufficiently negative. We use the differentiability of T b,a = T b,a
Y ◦ (T a

X , pr1) on the
finite interval [b,0] that is left. We define Θn+1

b,a = T b,a ◦ρa ◦Θn and estimate

sup
t∈[b,0]

∥∥[
Θn+1(x0 +h)−Θn+1(x0)−DΘn+1(x0) ·h

]
(t )

∥∥e−(ρ+µ) t

≤ ‖ρb ◦Θn+1(x0 +h)−Θn+1
b,a (x0 +h)‖ρ+µ+‖ρb ◦Θn+1(x0)−Θn+1

b,a (x0)‖ρ+µ
+∥∥[

ρb ◦DΘn+1(x0)−DΘn+1
b,a (x0)

] ·h
∥∥
ρ+µ

+‖Θn+1
b,a (x0 +h)−Θn+1

b,a (x0)−DΘn+1
b,a (x0) ·h‖ρ+µ.

This holds for all a ≤ b and the first three terms can be made arbitrarily small when a →−∞ due to
Proposition 3.42 and Corollary 3.43, while the last term is o(‖h‖) since Θn+1

b,a is differentiable by the
chain rule. If the estimate o(‖h‖) is independent of a, then we can finally, for any ε > 0 and ‖h‖ ≤ δ

sufficiently small, estimate this by ε‖h‖.

That the term o(‖h‖) is independent of a follows from another application of the mean value theorem:∥∥Θn+1
b,a (x0 +h)−Θn+1

b,a (x0)−DΘn+1
b,a (x0) ·h

∥∥
ρ+µ

≤ ∥∥DΘn+1
b,a (ξ)−DΘn+1

b,a (x0)
∥∥
ρ+µ ‖h‖ where d(ξ, x0) ≤ ‖h‖

= ∥∥DT b,a(Θn(ξ),ξ) ·ρa ◦DΘn(ξ)−DT b,a(Θn(x0), x0) ·ρa ◦DΘn(x0)
∥∥
ρ+µ ‖h‖

≤
(∥∥DT b,a(Θn(ξ),ξ)−DT b,a(Θn(x0), x0)

∥∥
ρ+µ,ρ ‖DΘn(x0)‖ρ

+∥∥DT b,a(Θn(x0), x0)
∥∥
ρ+µ,ρ+µ ‖DΘn(ξ)−DΘn(x0)‖ρ+µ

)
‖h‖

≤ ε(d(ξ, x0))‖h‖

since the continuity estimates for the formal derivatives D˜ T directly translate into the same estimates
for the true derivative counterparts DT b,a on restricted intervals.

Thus, we can now conclude by induction, starting at Θ0 ≡ 0, that for each n ≥ 0 the map Θn ∈ S0 is
differentiable when viewed as map into Bρ+µ(I ;Y ), while the results in Section 3.7.5 show that we
actually have

Θn ∈C 1,α
b,u

(
X ;Bρ+µ(I ;Y )

)
. (3.73)

Finally, we have uniformly convergent sequences

Θn →Θ∞ ∈S0 and DΘn → D˜Θ∞ ∈Sµ1 (3.74)
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by the fiber contraction theorem, so now we apply Theorem D.2 (taking into account Remark D.3)
to conclude that D˜Θ∞ is the derivative of Θ∞ as a map X → Bρ+µ(I ;Y ). It was already shown in
Proposition 3.37 that D˜Θ∞ is bounded and continuous, just as the DΘn in (3.73).

Remark 3.46 (on topologies used).
The convergence in (3.74) is with respect to uniform supremum norms as in Definition 2.9. These
induce a topology that is stronger than the weak Whitney (or compact-open) topology, cf. Section 1.7.
The convergence in Theorem D.2 is with respect to the weak Whitney topology, both the assumption and
result. This is sufficient, since we are primarily interested in the result that Θ∞ is differentiable, not in
what sense Θn and its derivatives converge to Θ∞. On the other hand, we did already have convergence
of DΘn → D˜Θ∞ = DΘ∞ with respect to these stronger uniform norms, so clearly Θn →Θ∞ in uniform
C 1-norm as well. ♦

3.7.8 Conclusion for the first derivative

The evaluation map ev0 : Bρ+µ(I ;Y ) → Y is bounded linear so the graph (3.41) of the persistent invariant
manifold also satisfies

h̃ = ev0 ◦Θ∞ ∈C 1,α
b,u (X ;Y ).

The size of Dh̃ can be estimated using the fixed point equation for D˜Θ∞. This yields

‖D˜Θ∞‖ρ ≤
q

1−q
‖D˜ x0 TX‖,

and the contraction factor q < 1 can be made arbitrarily small by choosing ζ small. As indicated
in (3.18), ζ is in turn controlled by δ, σ1 from Theorem 3.2, and ν from Lemma 3.12, which can be
chosen arbitrarily small. This completes the proof of all statements in Theorem 3.2 for r = 1+α with
α ∈ [0,1]. Note that this is the case k = 1 as in Remark 3.3, v .

3.7.9 Higher order derivatives

To obtain higher order smoothness of the perturbed invariant manifold, we consider equation (3.42) for
k > 1. The principal term governing the contraction is still D˜ y T (Θ(x0), x0), now acting on multilinear
maps D˜ kΘ(x0) ∈Lk

(
TX ;B kρ+µk (I ;Y )

)
. The remaining terms only depend on lower order derivatives of

Θ(x0), hence they do not influence the contractivity estimate in the fiber contraction theorem. It must
be verified, though, that these terms depend continuously on the lower order derivatives as mappings
into B kρ+µk (I ;Y ). Note again that we set µk = αρ in case of α-Hölder continuity; in case of uniform
continuity (denoted by α= 0) we choose a sequence {µ j }1≤ j≤k such that the following hold true:

i. µ j < 0 for each j ;

ii. the spectral gap condition ρY < k ρ+µk < ρ < ρX still holds;

iii. there exists a ρ̃ < ρ such that

k ρ+µk < k ρ̃ and j ρ̃ ≤ j ρ+µ j for any j < k. (3.75)

It follows that the sequence µ j ’s is strictly decreasing (i.e. increasing in absolute value), and that we have
continuous embeddings B kρ̃ ,→ B kρ+µk and B jρ+µ j ,→ B j ρ̃ ; in the first embedding we reserved some
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spectral space to apply Corollary B.3. These choices—as well as more ideas in this section—are inspired
by [Van89, Sect. 3], which is an interesting read for comparison in a simpler setting.

We reuse the scheme already defined in Section 3.7.1 for the first order derivatives (3.43). Let us walk
through these items step by step and indicate the changes that need to be made.

i. Candidate functions for the higher order derivatives can be found by formal differentiation and
application of Theorem E.2. This is a straightforward procedure, although tedious and quite
unenlightening to perform. Let us show just one example16:

D˜ 2
y TX (y, x0)

(
δy1,δy2

)
(t ) =∫ 0

t

(
DΦy (t ,τ, xy (τ)) ·

[
D2

y ṽX (xy (τ), y(τ))
(
δy1(τ),δy2(τ)

)
+Dx Dy ṽX (xy (τ), y(τ))

(
δy1(τ),

(
D˜ y TX (y, x0)δy2

)
(τ)

)]
+

[
D2Φy (t ,τ, xy (τ)) · (D˜ y TX (y, x0)δy2

)
(τ)

+
∫ τ

t
DΦy (t ,σ, xy (σ)) · [Dy Dx ṽX (xy (σ), y(σ)) ·δy2(σ)

] ·DΦy (σ,τ, xy (τ)) dσ
]

·Dy ṽX (xy (τ), y(τ)) ·δy1(τ)

)
dτ. (3.76)

ii. For contractivity in the fibers we still only need to consider the map D˜ y T as in (3.44), since that is
the principal term in (3.42). This map is contractive for any ρ′ ∈ (

ρY ,ρX

)
, hence also for ρ′ = k ρ+µ

for any µ≤ 0 sufficiently small, when ρ ∈ (
ρY ,ρX

)
is chosen appropriately. The other terms in (3.42)

are bounded maps as well, and linear in the D˜ jΘ(x0). It follows from Proposition C.3 that each of
these terms has weighted degree

k−1∑
i=1

i ·pi = k −m

with respect to the D˜ jΘ(x0), while they incur an additional exponential factor emρ t from taking m
derivatives with respect to x0 ∈ X , due to Lemma C.1. Thus the combined exponential growth rates
sum to k ρ, and ρY < k ρ implies that the variation of constants integrals still converge, so these
terms are bounded maps into B kρ spaces. This still holds if we add µ j ’s that satisfy the conditions
set out above.

In the notation of Appendix C we define spaces of higher order derivatives,

Sµk = Γb
(
Lk(

TX ;B kρ+µ(I ;Y )
))

(3.77)

with norms
‖D˜ kΘ‖ = sup

x0∈X
‖D˜ kΘ(x0)‖Lk (Tx0 X ;B kρ+µ(I ;Y ))

extending (3.45). Similarly, we define as extensions of (3.46), higher order fiber mappings

F (k) = (T, D˜ 1T, . . . , D˜ k T ) on S0 ×Sµ1

1 ×·· ·×Sµk

k . (3.78)

These are again uniform fiber contractions with respect to the final factor Sµk

k as fiber, for any
choice of µ j ≤ 0 sufficiently small.

16Even though it is not obvious from (3.76), this expression is in fact symmetric in δy1, δy2. To verify this for the terms
containing Dx Dy ṽX , one should change the order of integration of τ, σ and expand the expression

(
D˜ y TX (y, x0)δy2

)
(τ)

using (3.43b).
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iii. Instead of trying to construct higher order formal tangent bundles, we represent the higher
derivatives on ‘formal tensor bundles’

T˜Bρβ(I ; X )k = ∐
x∈Bρ

β
(I ;X )

Bρ(I ; x∗(TX ))⊗k . (3.79)

Note that this choice of representation along base curves x matches our choice to represent higher
derivatives as in Definition C.6 when the former is evaluated at a fixed t . The trivializations, then,
are defined by tensor products of parallel transport terms Π(x|t0)⊗k , again when restricted to curves
x ∈ C 1. The resulting holonomy terms can be estimated by either the k-th power of the single
holonomy term, or, k −1 factors can be bounded by ‖Π(γ)‖ ≤ 2 such that the remaining factor
fulfills the required α-Hölder estimate. Then, all details in Section 3.7.5 can be repeated to obtain
uniform or α-Hölder continuity of the higher derivatives of TX , TY as maps on these formal tensor
bundles. Note that we can break each expression into parts such that only one factor is varied for
the continuity estimate and thus only once adds either αρ or µ to the exponential growth rate.
Thus, the spectral gap condition is still satisfied.

iv. We apply the fiber contraction theorem to (3.78) with base S0 ×Sµ1

1 ×·· ·×Sµk−1

k−1 and fiber Sµk

k . In
case of α= 0, we again seize some of the unused spectral space for the carefully chosen µ j ’s, such
that condition iii of Theorem D.1 holds. Let us assume by induction that F (k−1) already is a globally
attractive fiber map. The conditions (3.75) imply that if we insert elements D˜ jΘ ∈Sµ j

j into F (k), then

their exponents sum at most to k ρ̃, so the mapping onto the fiber Sµk

k is continuous by application
of Corollary B.3. For α-Hölder continuity we can simply choose µ j =αρ for all 1 ≤ j ≤ k. Thus, we
find a globally attractive fixed point

(Θ∞, D˜Θ∞, . . . , D˜ kΘ∞) ∈S0 ×Sµ1

1 ×·×Sµk

k with D˜ kΘ∞ ∈Cα
b,u .

v. We constructed a manifold structure on Bρ(J ; X ) (and a trivial one on Bρ
η (J ;Y ) as well) with an atlas

of charts induced by normal coordinate charts of the underlying manifold X . We represent higher17

derivatives in these induced normal coordinate charts Bρ(J ; x∗(TX )). Thus, we have for example

Dk
x T a

X (x, y) ∈Lk(
Bρ(J ; x∗(TX ));Bρ(J ;Y )

)
.

This precisely matches the representation of the formal higher derivatives on the tensor space
Bρ(I ; x∗(TX ))⊗k in point iii . Higher differentiability of the restricted maps T a

X and T b,a
Y follows as

in Section 3.7.7.

vi. Lemma 3.45 can be generalized to prove by induction over n that higher derivatives DkΘn exist; we
define DkΘn+1 ∈S0

k by (3.78).

vii. By induction we may assume that it was already proven that

Θn →Θ∞ ∈C k−1
b,u

(
X ;B (k−1)ρ+µk−1 (I ;Y )

)
as n →∞.

We apply Corollary D.4 to conclude that Θn → Θ∞ as sequence of C k functions and that Θ∞ ∈
C k

b,u

(
X ;B kρ+µk (I ;Y )

)
. The convergence is with respect to our uniform supremum norms, see

Remark 3.46.

17It would probably be more natural to consider the higher derivatives as maps into Banach manifolds with exponents k ρ,
but these norms are equivalent anyways.
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Just as in Section 3.7.8, this finalizes the proof of all statements in Theorem 3.2, but now for r = k +α
with k > 1 and α ∈ [0,1]. It follows that h̃ ∈C k,α

b,u , but the last part that remains to be shown, though, is

that ‖h̃‖k−1 can be made as small as desired.

From the fixed point equation (3.42) it follows that

‖Dk−1Θ∞(x0)‖ ≤ 1

1−q

∑
l ,m≥0

l+m≤k−1
(l ,m) 6=(0,0),(1,0)

∥∥Dl
y Dm

x0
T (Θ∞(x0), x0) ·Pl ,k−m

(
D•Θ∞(x0)

)∥∥.

Each term with l ≥ 1 contains at least one factor D jΘ∞(x0) with j < k − 1; these can be assumed
to be small by induction. The one remaining term with (l ,m) = (0,k − 1) can be expanded using
Proposition C.3. This yields, suppressing arguments Θ∞(x0) and x0,

Dk−1
x0

T =
k−1∑
j=1

D j
x TY ·P j ,k−1(D•

x0
TX ).

Since all terms are uniformly bounded in appropriate norms, it suffices to show that the D j
x TY can be

made small. Recall formula (3.43c) and the fiber contraction estimate for Dx TY in Section 3.7.3, where
we saw that Dx TY could be made small by choosing ‖ f̃ ‖,‖Dx f̃ ‖ ≤ ζ small. The higher derivatives D j

x TY ,
too, contain a factor Di

x f̃ with 0 ≤ i ≤ j in each term, so by Proposition 3.14 these can be made small.
Hence, Dk−1Θ∞ and consequently ‖h̃‖k−1 can be made uniformly small. Note that ‖h̃‖k cannot be
made small though, see Remark 3.15.



Chapter 4

Extension of results

In this chapter we discuss some ways to extend the main result of Theorem 3.1 to slightly more general
situations. These extensions are known from the compact and Euclidean settings, but a bit scattered over
the literature. We try to collect a number of these results here, while extending them to our noncompact
setting.

4.1 Non-autonomous systems

We proved the main theorem for an autonomous system and perturbation. The Perron method admits
without difficulty a time-dependent formulation; we refrained from including this, since it would only
have cluttered the already detailed proof, while time-dependence is easily added as an afterthought, as
already noted in Section 1.6.1.

Let us assume that M is an r -NHIM for the (time-independent) vector field v on (Q, g ) and that all
assumptions of Theorem 3.1 are fulfilled. We can allow time-dependent perturbations by the standard
trick to extend the phase space of the system by R 3 t . Define

Q̂ =R×Q with metric ĝ = dt 2 + g . (4.1)

Then (Q̂, ĝ ) is again of bounded geometry. We trivially extend the vector field v to

v̂(t , x) = (
1, v(x)

) ∈ T(t ,x)Q̂ (4.2)

and set M̂ = R×M ⊂ Q̂. Then the flow Φ̂ of v̂ has the same hyperbolicity properties as Φ since the
additional flow along ṫ = 1 is completely neutral and decoupled from the original system. It follows that
M̂ is again an r -NHIM for the dynamical system (Q̂,Φ̂,R). Note that we need a theory for noncompact
NHIMs to perform this extension by the time interval R. Now we can choose a perturbed vector ṽ that
depends explicitly on time, as long as ṽ ∈C k,α

b,u (Q̂) is close to v̂ . This means that the perturbation must

be small in C k,α-norm (including derivatives with respect to time), uniformly for all time. As a result we
find that the perturbed manifold M̃ will depend on time, i.e. it is not exactly of the form M̃ =R×M for
some M⊂Q. We do find that M̃ is uniformly close to M̂ = R×M , however, so M̃ is approximately of
this product form.

Remark 4.1. A direct application of Theorem 3.1 requires the perturbed vector field to be C k,α with
respect to time, too, since t ∈R is added to the phase space variables. Note that the result thus depends

113
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C k,α smoothly on time as well. A closer inspection of the proof shows that this can in fact be replaced
by the condition that v̂(t , ·) ∈C k,α

b,u , uniformly in t ∈R, just as in Remark A.7. In that case the resulting
manifold M̃ cannot be expected to be differentiable with respect to time anymore, but it still satisfies all
uniform C k,α smoothness and boundedness properties with respect to x ∈Q. In particular, M̃ is still
uniformly close to M̂ , uniformly for all t ∈R. ♦

Instead of starting with an autonomous system v , we can also take an initial non-autonomous system
v̂ and perturb that. As long as v̂ truly describes a non-autonomous system, that is, it is defined on a
space R×Q and has component 1 along R, then normal hyperbolicity is easily tested. The R-component
of the flow is trivially neutral, while the other Q-component must be checked in a context where, for
example, also the invariant splitting (1.9) may depend on time, but this introduces no fundamental
changes.

4.2 Smooth parameter dependence

Another interesting question for applications is if the persistent manifold depends smoothly on the
perturbation parameter. This result can be obtained in a similar way as time-dependence, now adding a
parameter p ∈ P to the phase space with trivial dynamics ṗ = 0. The noncompact theory is not essential
here, but it does allow for a simple proof.

Let again (Q, g ) and v = v(p, x) describe the system, where p ∈ P denotes the parameter. For simplicity
we assume that P = Rn and that p = 0 corresponds to the unperturbed system for which we have M
as r -NHIM. We consider again an extended system Q̂ = P ×Q and M̂ = P ×M . The extended vector
field we choose slightly differently: we use an external scaling parameter α≥ 0 to slowly ‘turn on’ the
parameter dependence. Let χ ∈C∞(R≥0; [0,1]) be a radial cut-off function such that χ(r ) = 1 for r ≤ 1
and χ(r ) = 0 for r ≥ 2, and define

v̂α(p, x) = (
0, v

(
χ(‖p‖)αp, x

))
(4.3)

as a vector field on Q̂. Note that M̂ is an r -NHIM for v̂0 by trivial extension. One can verify that ‖v̂α−v̂0‖r

can be chosen small with α. Uniformity with respect to p follows automatically from χ having compact
support. As a result of Theorem 3.1 we conclude that there exists an α> 0 such that v̂α has a C r family
of invariant manifolds

M̃ = ∐
p ′∈P

M̃p ′ , (4.4)

where M̃p ′ is the invariant manifold corresponding to the vector field v(p, · ) with p =χ(‖p‖)αp ′. This
parametrizes a full neighborhood B(0;α) ⊂ P .

4.3 Overflowing invariant manifolds

Overflowing invariance is a useful tool to study invariant manifolds whose normal hyperbolicity proper-
ties break down beyond a certain domain, see also Section 1.6.3. We shall indicate here how our main
result can be extended to overflowing invariant manifolds. We provide conditions for persistence that
are slightly weaker than those in the literature. These might prove useful for some applications.

The following definition extends that in [Fen72] and is equivalent to Definition 2.1 in [BLZ99].
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Definition 4.2 (Overflowing invariant manifold).
Let (Q, g ) be a Riemannian manifold, M ⊂Q a C 1 submanifold with boundary ∂M ∈C 1, and v ∈C 1 a
vector field on Q with flow Φ. Let n denote the outward normal at ∂M. Then M is called overflowing
invariant under v if the following hold:

i. backward orbits stay in M, i.e. ∀m ∈ M , t < 0: Φt (m) ∈ M;

ii. the vector field v points uniformly strictly outward at ∂M, i.e. there exists some ε > 0 such that
∀m ∈ ∂M : gm(v,n) ≥ ε.

Definition 1.8 of normal hyperbolicity can be adapted to this setting (only condition i is necessary): we
assume that only stable normal directions are present and we only require M to be negatively invariant,
while the exponential rate conditions must hold along orbits as long as they stay inside M .

Remark 4.3. Note that the uniformity in condition ii reduces to the standard ‘strictly outward’ if M =
M ∪∂M is compact. This is the natural generalization for noncompact manifolds, since the condition is
used to guarantee that under small perturbations and in a small tubular neighborhood the vector field
is still pointing outward. ♦

The Perron method uses orbits as fundamental objects and constructs a contraction operator on these.
The essence of Definition 4.2 is to guarantee condition i that backward orbits stay inside M , even under
a small perturbation of the vector field. This provides an idea to slightly weaken the overflow invariance
definition into an a priori argument. If any orbits considered in the Perron method proof stay inside
M , then all assumptions throughout the proof are still valid and we obtain a persistent manifold M̃ . To
make this idea explicit, we choose the trivial bundle setting of Theorem 3.2 and introduce the following
weakened definition.

Definition 4.4 (A priori overflowing invariance).
Let (X , g ) be a Riemannian manifold and let M ⊂ X an open submanifold, i.e. of the same dimension,
with boundary ∂M ∈C 1. Let Y be a Banach space, and v ∈C 1 a vector field on X ×Y with flow Φ and
M mapped into M × {0} ⊂ X ×Y . Let n denote the outward normal at ∂M. Let ṽ be a perturbation of v.
Then M is called a priori overflowing invariant for the pair (v, ṽ) if the following hold:

i. backward orbits of v stay in M, i.e. ∀m ∈ M , t < 0: Φt (m) ∈ M;

ii. the vector field ṽ points (non-strictly) outward at a tubular neighborhood over ∂M, i.e. there exists
some η> 0 such that

∀ (m, y) ∈ ∂M ×Y≤η : g
(
DπX · v(m, y),n(m)

)≥ 0.

Remark 4.5. Note that Definition 4.2 implies 4.4 when ‖ṽ − v‖1 is small enough and ṽ ∈C 1
b,u .

Remark 4.6. A useful generalization of Definition 4.4 to the setting of Theorem 3.1 is less trivial. There
we do not have canonical vertical fibers over ∂M in the tubular neighborhood, nor the associated
projection of v onto TX at ∂M . We cannot simply take a non-vertical fiber; the Perron method adapts
the curves x and y separately, so it may happen that while x(0) ∈ ∂M is kept fixed, y(0) is updated to a
new value such that (x(0), y(0)) lies outside of the tubular neighborhood over M , and control is lost. ♦

Let us demonstrate the application of this more general definition with the following simple example,
see also Figure 4.1.
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Example 4.7 (Persistence under a priori overflowing invariance).
Let X ×Y =R×R and let the unperturbed vector field be given by

v(x, y) = (− (x −1)2, (x2 −4) y
)
.

Note that M = (−1,1) ⊂ X is strictly overflowing invariant at its left boundary x =−1 (we could choose
other values as well), but non-strictly so at the right boundary x = 1, which is a degenerate stationary
point. The vector field is normally attracting over the interval (−2,2) and uniformly so over any closed
subinterval. Note that there does not exist a subinterval of X that is overflowing invariant according to
Definition 4.2.

Let us choose a family vδ of perturbations of v such that ‖vδ− v‖1 ≤ δ and v = vδ on a neighborhood of
(1,0) ∈ X ×Y . Then M satisfies Definition 4.4 for this family vδ and application of Theorem 4.8 below
shows that for δ sufficiently small, there exists a unique negatively invariant manifold M̃ = Graph(h̃)
for the flow of vδ such that h̃ : [−1,1] ⊂ X → [−η,η

]⊂ Y . For any r ≥ 1 there exists a δ such that h̃ ∈C r

holds. ©

Y

0 1 2

M

−1
X

Figure 4.1: a priori overflowing invariance for the manifold M .

Theorem 4.8 (Persistence under overflowing invariance).
Let k ≥ 2, α ∈ [0,1] and r = k +α. Let (X , g ) be a smooth, complete, connected Riemannian manifold of

bounded geometry and Y a Banach space. Let vδ ∈C k,α
b,u be a family of vector fields defined on a uniformly

sized neighborhood of the zero-section in X ×Y such that ‖vδ−v0‖1 ≤ δ. Let M satisfy Definition 4.4 for
the pair (v0, vδ) for any δ ∈ (0,δ0] and let M be r -normally attracting for the flow defined by v0, that is, M
satisfies the overflowing invariant version of Definition 1.11 with rank(E+) = 0.

Then for each sufficiently small η > 0 there exist δ1 > 0 such that for any δ ∈ (0,δ1], there is a unique
manifold with boundary M̃ = Graph(h̃), h̃ : M → Y , ‖h̃‖0 ≤ η such that M̃ is negatively invariant under
the flow defined by vδ. Moreover, h̃ ∈ C k,α

b,u and ‖h̃‖k−1 can be made arbitrary small by choosing ‖vδ−
v0‖k−1 sufficiently small. The function h̃ extends continuously to ∂M.

Remark 4.9. In this overflowing invariance setting, the condition that rank(E+) = 0 is really necessary
and not an artifact of our proof. The same results hold for inflowing invariance with no stable normal
directions present. Definition 4.4 can be extended to full normal hyperbolicity with both stable and
unstable normal directions present. This requires local invariance of the vertical fiber ∂M ×Y≤η over
∂M under both the forward and backward orbits.
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M
x1

x2

Figure 4.2: a nonconvex
subset M ⊂ X .

Remark 4.10. We can restrict to a smaller open subset U of X that contains
M , so we do not need vδ ∈ C k,α

b,u to hold on all of X . If this subset U is not
convex, though, we may run into difficulties when applying the mean value
theorem, see Figure 4.2: an intermediate point ξ 6∈ M on the line between
x1, x2 may be selected, so we need to make sure that the uniform estimates
still hold there. Thus the need for U ⊃ M to be convex, see also the remark
in [Hen81, p. 289]. ♦

Proof. The proof of Theorem 3.2 requires minimal changes. Note that regardless of the modifications
and smoothing preparations performed in Section 3.4, the vector field ṽX is precisely the horizontal
component of the perturbed vector field vδ. In Section 3.6 where we proved existence and uniqueness
of M̃ , we take η small enough that it satisfies condition ii of Definition 4.4. This guarantees that
x = TX (y, x0) is a solution curve such that x

(
(−∞,0]

)⊂ M for any y ∈ Bρ
η (I ;Y ) and x0 ∈ M . Hence, the

contraction mapping T = TY ◦ (TX , pr1) is well-defined with intermediate space Bβ(I ; M) and we find a
unique Lipschitz continuous fixed point map Θ∞ : M → Bρ

η (I ;Y ).

No essential changes are needed with respect to the smoothness proof in Section 3.7. The formal
derivatives (3.43) are well-defined along all curves x and y that are considered, since the derivatives of
ṽX , A, f are defined on an open neighborhood of M . In Section 3.7.7 we use the mean value theorem to
prove that the restricted maps T b,a have true derivatives. Remark 4.10 is not problematic here, since T b,a

is defined on the finite interval J = [a,0] and thus we can restrict to arbitrarily small open neighborhoods
along the curves x, y when restricted to J . Hence we find that Θ∞ ∈C k,α

b,u on M .

4.4 Full normal hyperbolicity

We made the assumption in our main theorems that the unstable bundle E+ was absent, that is, that
M was a normally attracting invariant manifold. As already noted in Remark 3.3, viii , it should be
possible to generalize this to the case of full normal hyperbolicity where both stable and unstable
normal directions are present. Let us indicate here how this more general result can be obtained.

Assume that in Theorem 3.1 we have an invariant splitting (1.9) with both stable and unstable bundles
E± present. The reduction principle in Section 2.6 leads to a formulation of Theorem 3.2 with a trivial
bundle

π : X × (
Y ×Z

)→ X , (4.5)

where X is a smoothed approximation of M and approximate, boundedly smooth representations of
the bundles E± are embedded into the trivial bundles X ×Y , X × Z with Y , Z Banach spaces. This
means that M is again represented as the graph of an approximate zero section hσ : X → Y ×Z ; now,
the subbundles X ×Y and X ×Z are approximately invariant under vσ. The deviation from invariance
is controlled by σ, the parameter of the smoothing approximation of M . We find linear operators A±(x)
on Y and Z respectively, that approximate the linearizations of vY and vZ , and corresponding flows Ψ±

with approximate growth rates. We add a map1

TZ (x, y, z)(t ) =
∫ ∞

t
Ψ+

x (t ,τ) f̃ +(
x(τ), y(τ), z(τ)

)
dτ (4.6)

1Note that since t ≤ τ, we have a reverse flow Ψ+(t ,τ) for the unstable directions, which indeed satisfies the growth
estimates (1.10).
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η
M

E−

E+

P+≤η

Figure 4.3: an overflowing tubular neighborhood P+≤η along the unstable manifold.

with z ∈ Bρ
η (R≥0; Z ) and adapt the other maps to incorporate z as an argument. We use Lemma 3.30 and

extend all curves in X , Y , Z to the full real line. This should yield a contraction

T = (TY ,TZ )◦ (
TX , pr1 , pr2

)
on Bρ

η (R;Y )×Bρ
η (R; Z ), (4.7)

again with x0 ∈ X as initial value parameter. We obtain a pair (Θ−,Θ+) of fixed point maps, and after
evaluation at t = 0 we find

(h̃−, h̃+) : X → Y ×Z , (4.8)

whose graph describes the persistent invariant manifold M̃ . See e.g. [VG87] for an application of this
technique in the center manifold setting.

An alternative method to obtain M̃ is by constructing it as the intersection of its (center-)stable and
(center-)unstable manifolds. Here we make use of over- and inflowing invariance. First we construct
a tubular neighborhood P+≤η of M along (a smooth approximation of) the unstable bundle E+, see
Figure 4.3. This manifold is approximately invariant and overflowing according to Definition 4.2 if η is
sufficiently small since it lies approximately along the unstable direction of M . Careful modifications to
the setup of the proof in sections 3.4 and 3.5 will allow us recover the local unstable manifold W U

loc of M̃
as the graph of

h̃U : P+
≤η→ E−,

where E− is an extension of the bundle E− over P+≤η. Vice versa we can find the local stable bundle W S
loc

as a graph over P−≤η. Their intersection yields

M̃ =W U
loc ∩W S

loc ∈C k,α
b,u

since the intersection is uniformly transversal. This is a standard trick which is also applied in [Fen72;
HPS77] using the graph transform.

4.5 Recovery of the invariant fibration and splitting

In our main Theorem 3.1 we did not prove that the persistent manifold is again normally hyperbolic.
As stated in Remark 3.3, ix , we must recover the invariant splitting of the perturbed manifold M̃ to be
able to conclude that M̃ again satisfies Definition 1.8 of normal hyperbolicity. We will sketch how to
find the invariant fibers of the stable manifold of M̃ in the setting of Theorem 3.2 with a trivial bundle
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Tγ(t )M̃
E−
γ(t )

M̃

Y W S
loc(γ(t ))

X

Figure 4.4: the invariant fibers of W S
loc(M̃) modeled on the bundle Em = γ∗(TM̃ ⊕ Ê−).

Q = X ×Y . These fibers are easily recovered using the Perron method, and smoothness of each single
fiber essentially comes for free. We then readily obtain the vertical part Ẽ− of the invariant splitting as
the tangent planes to these fibers at M̃ . Since TM̃ is already invariant, we have

TM̃Q = TM̃ ⊕ Ẽ− (4.9)

which is invariant under the tangent flow, cf. (1.9). Note that we should still prove boundedness and
uniform continuity of this splitting.

Each single invariant fiber can be found by application of the non-autonomous Perron method. Let
Υ̃ : R× M̃ → M̃ denote the flow of the perturbed system, restricted to the persistent manifold, and let
γ(t ) = Υ̃t (m) denote a solution curve in M̃ . Consider the pullback bundle

Em = γ∗(TQ)
π−→R. (4.10)

Note that γ∗(TM̃) is a subbundle of Em in a natural way, and that it is invariant under the tangent flow
DΥ̃t . Next we consider γ∗(E−) as a subbundle of Em : even though E− was defined over the original
manifold M , it can simply be translated along the canonical fiber Y to be identified with a bundle over
M̃ and then be pulled back along γ. Thus we have a splitting

TM̃Q = TM̃ (X ×Y ) = TM̃ ⊕E−.

The original splitting TM ⊕E− was bounded, hence when M̃ is sufficiently close to M in C 1 norm, then
this splitting will be bounded again. It is uniformly continuous since both subbundles are. In order to
recover a smooth stable fibration later, we will moreover want to construct a smooth approximation Ê−,
similar to the convolution smoothing of Â in Section 3.4. The stable manifold W S

loc(M̃) of the perturbed
system consists of single fibers W S

loc(m) that can be modeled as graphs of maps

h̃S
m : Ê−

m → Tm M̃ ,

see Figure 4.4. We recover the map h̃S
m after application of the Perron method to the non-autonomous

system defined on Em by pulling back the vector field ( ∂∂t , ṽ) along2

ϕ : γ∗(TQ) →R×Q : (t , x) 7→ expγ(t )(x) with x ∈ Tγ(t )Q (4.11)

2We only can (and need to) perform the pullback in an η-sized tubular neighborhood of γ. Outside this neighborhood we
smoothly cut off the vector field to a suitable linearization. Therefore we only recover the local stable manifold.



120 CHAPTER 4. EXTENSION OF RESULTS

That is, we look at the system in normal coordinates that follow the solution curve γ. This means that
the vector field ϕ∗( ∂∂t , ṽ) on Em has constant speed 1 on the base R, i.e. the time axis, and preserves
the zero section, i.e. the origin of the coordinates at γ(t ). Since Dexpγ(t )(0) = 1, the exponential growth
conditions are preserved under pullback. Hence, the splitting

Em = γ∗(TM̃)⊕γ∗(Ê−)

is approximately invariant with growth rates close to ρX and ρY respectively. Now we apply the Perron
method on the interval R≥0. That is, we have the operator

T (x, y, y0)(t ) =
( ∫ ∞

t
DΥ̃t−τ(γ(τ)) fX (τ, x(τ), y(τ)) dτ ,

Ψγ(t ,0) y0 +
∫ t

0
Ψγ(t ,τ) fY (τ, x(τ), y(τ)) dτ

) (4.12)

which is a contraction on pairs of curves (x, y) ∈ Bρ(R≥0;Em) with the partial initial condition y0 ∈
Em,0 = Ê−

m as parameter. Here we chose ρY < ρ < ρX and used the fact that fi (t ,0,0) = 0 for i = X ,Y .
The functions fX , fY are C 1-small nonlinear terms. These contain the linear and higher nonlinear
perturbations away from the linear flows DΥ and Ψγ along γ∗(TM̃) and γ∗(Ê−) respectively, corrected
for the bounded coordinate changes introduced by ϕ in (4.11). Thus, we find h̃S

m by evaluating the
x-component of the fixed point map at t = 0 for a given y0.

We can establish that h̃S
m ∈C k,α

b,u by an implicit function argument3 on the Banach space Bρ(R≥0;Em),
see [Irw70]. The unpublished preprint [Dui76] extends these ideas to the geometric context of Banach
bundles over R.

Note that this result is uniform in the family parameter m ∈ M̃ , but it does not include smoothness with
respect to m. To obtain smoothness, we extend the pullback bundle (4.10) to

E = ∐
m∈M̃

Em =Υ∗(TQ)
π−→R× M̃ . (4.13)

This bundle can be endowed with a topology by parallel transport along the curves γ as in Section 3.7.4.
Then each derivative with respect to m adds an exponential growth factor eρM̃ t since the curves γ can
diverge at that rate in forward time. Note that ρM̃ corresponds to ρM in (1.11), that is, the upper bound
on the spectrum of the tangential flow. This leads to the spectral gap condition

ρY < ρX − r ρM̃ ≈ (r +1)ρX , (4.14)

from which it follows that the mapping m 7→ h̃S
m has C k−1,α

b,u smoothness. This implies that the invariant
splitting is at least uniformly continuous and bounded. The exponential growth rates with respect to
the splitting follow from small perturbation estimates similar to those in sections 3.4 and 3.5. This
completes the requirements for normal hyperbolicity of M̃ in Definition 1.8.

3We immediately recover higher smoothness instead of having to go through an elaborate scheme involving the fiber
contraction theorem as in Section 3.7. The reason is that Bkρ(R≥0;Em ) ,→ Bρ(R≥0;Em ) is a continuous embedding when ρ < 0
and we look at R≥0, that is, higher powers of negative exponential growth decay even stronger.



Appendix A

Explicit estimates in the implicit function
theorem

In this appendix, we carefully examine the implicit function theorem. We extend this standard theorem
to classes of functions with additional properties such as boundedness and uniform and Hölder
continuity. The crucial ingredient is the explicit formula (A.2) for the derivative of the implicit function,
which allows us to transfer regularity conditions onto the implicit function.

As an application of the implicit function theorem in Banach spaces, we will establish existence,
uniqueness and smooth dependence on parameters for the flow of a system of ordinary differential
equations. Essentially, these are standard results from differential calculus, see e.g. Zeidler [Zei86,
p. 150,165] or [Rob68; Irw72]. We consider a general setting of ODEs in Banach spaces and show smooth
dependence, both on the initial data, as well as on the vector field itself. Moreover, our extension of the
implicit function theorem yields boundedness and uniform continuity results.

We start with some results on inversion of linear maps.

Lemma A.1 (Invertibility of linear maps).
Let X be a Banach space and let A ∈L(X ) be a continuous linear operator with continuous inverse. Let
B ∈L(X ) be another linear operator such that ‖B‖ < 1

‖A−1‖ . Then A+B is also a continuous linear operator
with continuous inverse, given by the absolutely convergent series(

A+B
)−1 = ∑

n≥0

(− A−1B
)n

A−1 = ∑
n≥0

A−1 (−B A−1)n
. (A.1)

Proof. First of all, note that there exists an M ≥ 1 such that ‖A‖,‖A−1‖ ≤ M . The base of the geometric
series can be estimated in operator norm as ‖−A−1B‖ < 1, so the series is absolutely convergent and the
limit is a well-defined continuous linear operator, whose operator norm can be estimated as

‖(A+B)−1‖ ≤ ‖A−1‖ ∑
n≥0

‖−A−1B‖n ≤ ‖A−1‖
1−‖A−1B‖ <∞.

That the limit is again a well-defined linear operator follow from the fact that L(X ) is a Banach space.

Applying A+B to the left-hand side of (A.1), we see that the candidate is a right inverse:

(A+B)
∑

n≥0
A−1 (−B A−1)n = ∑

n≥0

(−B A−1)n − ∑
n≥0

(−B A−1)n+1 = 1.
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Similarly the candidate can be shown to be a left inverse of A+B . Now we have that the candidate is
continuous and a full inverse and furthermore, A+B itself is clearly a continuous operator as the sum
of two continuous operators, so the proof is completed.

Corollary A.2 (Linear inversion is analytic).
Let I : A 7→ A−1 be the inversion map defined on continuous, linear mappings A ∈L(X ) with continuous
inverse, where X is a Banach space. The map I is analytic with radius of convergence ρ(A) ≥ 1/‖A−1‖.
When X is finite-dimensional, I is a fortiori a rational map.

Proof. Extending well-known results on analytic functions to Banach spaces (see e.g. [Muj86]), we read
off from (A.1) that the inversion map I can be given around A by an absolutely convergent power series
with ρ(A) ≥ 1/‖A−1‖ and is thus analytic. When X is finite-dimensional, det(A) 6= 0 implies that A−1 is a
rational expression in the matrix coefficients of A according to Cramer’s rule.

The inversion map I is locally Lipschitz, like every C 1 mapping:

‖(A+B)−1 − A−1‖ ≤ ∑
n≥1

‖−A−1B‖n ‖A−1‖ ≤ ‖A−1‖2

1−‖A−1B‖ ‖B‖.

However, when we restrict to a domain bounded away from non-invertible operators A, that is, when
‖A−1‖ ≤ M , then the Lipschitz constant is bounded for small B . This implies that when A = A(x)
depends on a parameter via a certain continuity modulus, then A(x)−1 will have the same continuity
modulus up to the Lipschitz constant, at least in small enough neighborhoods.

The standard implicit function theorem on Banach spaces can be stated as

Theorem A.3 (Implicit function theorem).
Let X be a Banach space, Y a normed linear space, and let f ∈C k≥1(X ×Y ; X ). Let (x0, y0) ∈ X ×Y and
assume that f (x0, y0) = 0 and that D1 f (x0, y0)−1 ∈L(X ) exists as a continuous, linear operator.

Then there exist neighborhoods U ⊂ X of x0 and V ⊂ Y of y0, and a unique function g : V →U such that
f (g (y), y) = 0. Furthermore, the map g is C k and the derivative of g is given by the formula

Dg (y) =−D1 f (g (y), y)−1 ·D2 f (g (y), y). (A.2)

See [Zei86, p. 150–155] for a proof. Note that we do not need to assume that Y is a complete space, as the
contraction theorem is only applied on X . Recall that we use notation where D denotes a total derivative,
while Di with index i ∈N denotes a partial derivative with respect to the i -th argument.

Formula (A.2) for the derivative of the implicit function g will be crucial for the extension of the implicit
function theorem to many classes of regularity, extending C k smoothness. We use the Lipschitz estimate
for the inversion map and require that the regularity conditions are preserved under composition, addi-
tion, multiplication and localization of functions. By Proposition C.3, the derivatives of g are expressed
in terms of D1 f (g (y), y)−1 acting on a polynomial expression of same or lower order derivatives of f
and strictly lower order derivatives of g .

As an example, let us take C k,α
b functions. Using Lemma 1.19 and induction over k, this function class is

preserved under products. For composition, we check Hölder continuity,

‖ f (g (x2))− f (g (x1))‖ ≤C f
(
Cg ‖x2 −x1‖α

)α ≤ (C f Cα
g )‖x2 −x1‖α

for 0 <α≤ 1, when ‖x2 − x1‖ ≤ 1. In case ‖x2 − x1‖ > 1 however, we can directly use the boundedness
of f :

‖ f (g (x2))− f (g (x1))‖ ≤ ‖ f (g (x2))‖+‖ f (g (x1))‖ ≤ 2‖ f ‖0 ‖x2 −x1‖α.
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Thus, Hölder continuity is preserved with some new Hölder constant, while boundedness is trivially
preserved as well. We conclude that if f ∈C k,α

b , and (D1 f )−1 is globally bounded, then we can read off

from formula (A.2) that g ∈C k,α
b . The same results hold for the class of C k

b,u functions, or any other class
of functions whose properties are preserved when inserted into (A.2). Together, interpreting α= 0 as an
empty condition, these lead to

Corollary A.4. Let in the Implicit Function Theorem A.3, f ∈ C k,α
b,u with k ≥ 1 and 0 ≤ α ≤ 1. Assume

moreover that ‖D1 f (x, y)−1‖ ≤ M is bounded on U ×V for some constant M <∞. Then g ∈C k,α
b,u , and the

boundedness and continuity estimates depend in an explicit way on those of f .

Remark A.5. Formula (A.2) only provides control on the derivatives of the implicit function, but the size
of g itself can be controlled by choice of the neighborhood U . In our applications, this will match up
with choosing coordinate charts around the origin in Rn . ♦

Let us now consider an ordinary differential equation

ẋ = f (t , x), x(t0) = x0, (A.3)

where x takes values in a Banach space B and f ∈ C k,α
b,u (R×B ;B) with k ≥ 1, 0 ≤ α ≤ 1. We consider

solutions x ∈ X =C 0(I ;B) equipped with the supremum norm, which turns X into a Banach space1. We
choose I to be a closed interval I = [a,b] ⊂R. The Picard integral operator

T : X → X : x(t ) 7→ T (x)(t ) = x0 +
∫ t

t0

f (τ, x(τ)) dτ (A.4)

has exactly the solution curves of (A.3) as fixed points. It also implicitly depends on f ∈C k,α
b,u (R×B ;B)

and (t0, x0) ∈ I ×B . From now on we denote by Dx a partial derivative with respect to the argument that
is typically described by the variable x.

This T is a contraction for |I | = b −a small enough:

‖T (x1)−T (x2)‖ = sup
t∈I

‖
∫ t

t0

f (τ, x1(τ))− f (τ, x2(τ)) dτ‖

≤ sup
t∈I

∫ t

t0

‖Dx f (τ,ξ(τ))‖‖x1(τ)−x2(τ)‖ dτ

≤ sup
t∈I

|t − t0|‖Dx f ‖‖x1 −x2‖

≤ |I |‖Dx f ‖‖x1 −x2‖.

We restrict T to a bounded subset of argument functions f ,

F ⊂C k,α
b,u (R×B ;B), sup

f ∈F
‖ f ‖k,α ≤ R.

Thus, choosing |I | ≤ 1
2R turns T into a q = 1

2 contraction, which shows that there is a unique x ∈ X
satisfying T (x) = x and therefore (A.3).

1Note that any actual solution x will be C 1 at least, but only x ∈C 0 is required. This makes X a complete space without the
need to introduce norms more complicated than the supremum norm.
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Next, we consider small perturbations of both (t0, x0) and f . To apply the implicit function theorem, we
define F (x) = x −T (x). This function has a unique zero and DF (x) is invertible, as

F (x +δx)(t )−F (x)(t )

= δx(t )−
∫ t

t0

Dx f
(
τ,ξ(τ)

) ·δx(τ) dτ

= δx(t )−
∫ t

t0

Dx f
(
τ, x(τ)

) ·δx(τ)+O
(‖ξ(τ)−x(τ)‖)‖δx(τ)‖ dτ

= (
DF (x) ·δx

)
(t )+o

(‖δx‖) (A.5)

The neglected terms are o
(‖δx‖) since Dx f is uniformly continuous on I , so DF (x) exists. From

the expression above, we can also easily read off continuity of DF (x) as a linear operator, by writing
DF (x) = 1+ A(x) and noticing that

‖A(x)‖ ≤ |I |‖Dx f ‖ < 1
2 ,

thus DF (x) is a bounded, invertible linear operator such that ‖DF (x)−1‖ ≤ 2.

By similar estimates, the derivatives of F with respect to the parameters t0, x0, and f can be calculated
as

Dt0 F (x) = f (t0, x(t0)),

Dx0 F (x) =−1,(
D f F (x) ·δ f

)
(t ) =−

∫ t

t0

δ f (τ, x(τ)) dτ.

(A.6)

Note that these are all bounded linear operators; Dt0 F (x) is because ‖ f ‖ ≤ R. Hence, F ∈ C 1
b as a

function of x, t0, x0, f , so by the implicit function theorem, the solution x(t ; t0, x0, f ) depends C 1
b on

t0, x0, f .

Next, we establish C k,α
b,u dependence on the initial conditions t0, x0 and C k

b dependence on f and t0, x0

together. Uniform and Hölder dependence on f are lost because the variations δ f ∈ C k,α
b,u are not

uniformly equicontinuous. The first derivatives can be differentiated another k −1 times with respect
to each of the variables, using similar estimates as in (A.5). These derivatives are continuous as f is
uniformly continuous on the interval I . Uniform and Hölder continuity with respect to t0, x0 can be read
off directly from the expressions (A.5),(A.6) or their higher order derivatives, as f ∈C k,α

b,u . The implicit
function theorem only gives an explicit formula (A.2) for the derivative. Here, this translates into the
fact that no boundedness follows for the C 0-norm of the solution curve, only for the norms on the
derivatives.

We have thus shown that the conditions of Corollary A.4 of the implicit function theorem have been
satisfied, so there exists a neighborhood of (t0, x0, f ) in I ×B ×F such that for each (t ′0, x ′

0, f ′) in that
neighborhood there is a unique solution to (A.3) and the solutions x depend in a C k,α

b,u way on t ′0, x ′
0 and

C k
b on all of t ′0, x ′

0, f ′. Note that this result is obtained only on the interval I . We can however extend
these results to any bounded interval, by using the composition property of a flow; the estimates may
grow with interval size though. Hence, we have the following result, see also [DK00, App. B].

Theorem A.6 (Uniform dependence on parameters of ODE solutions).
Let an ordinary differential equation (A.3) be given, where f ∈F ⊂C k,α

b,u (R×B ;B) with k ≥ 1, 0 ≤α≤ 1, B

a Banach space, and F a bounded subset. Let I ⊂R be a bounded interval and X =C 0(I ;B) the Banach
space of (solution) curves, endowed with the supremum norm.
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Then the flow Φ is a C k
b mapping

Φ : I ×B ×F → X : (t0, x0, f ) 7→ (
t 7→ x(t )

)
.

The boundedness is understood to hold only for the derivatives. Moreover, Φ ∈C k,α
b,u holds as a mapping

from I ×B for fixed f ∈F .

Remark A.7. Differentiable dependence on time can be dropped from this theorem. That is, let us
instead assume that f (t , x) and its derivatives Di

x f (t , x), i ≤ k with respect to x are bounded continuous
with respect to (t , x). Then the flow is a C k

b mapping

Φ : B ×F → X : (x0, f ) 7→ (
t 7→ x(t )

)
when I ⊂ R is a bounded interval. This result follows directly from the proof, since we only used
differentiability with respect to t for differentiable dependence of Φ on t .

Remark A.8. Instead of a Banach space B , we can also choose the setting of a Riemannian manifold
(M , g ). Solving for the flow of a differential equation is defined in terms of local charts, so by standard
arguments the C k smoothness result extends to this setting.

If we assume moreover in the context of Chapter 2 that (M , g ) has bounded geometry and that f ∈C k,α
b,u ,

then we can obtain stronger results close to those of Theorem A.6. In any single normal coordinate chart
the results of Theorem A.6 hold. To extend the flow beyond one chart, we use the fact that coordinate
chart transitions are uniformly C k -bounded maps. It follows that Φ ∈C k,α

b,u on any domain such that all
image curves are covered by a uniformly bounded number of charts. This includes the domain M × I
for any finite interval I ⊂ R, since f itself is assumed bounded. The bounds and continuity moduli will
depend on |I | though.

Alternatively, uniform (Hölder) continuity estimates independent of charts can be obtained by using
Proposition 2.13 to express continuity moduli in terms of parallel transport. See Lemma C.10, which is
proven via a variation of constants method. ♦
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Appendix B

The Nemytskii operator

The Nemytskii operator creates a mapping on curves from a simple function between spaces. That is, in
its simplest form, if we have a function f : Rn →Rm , then the associated Nemytskii operator

F : C (R;Rn) →C (R;Rm), F (x)(t ) = f (x(t )),

maps curves x in Rn to curves y = F (x) = f ◦x in Rm . See also [Van89, p. 103–109] for a clear presenta-
tion.

We investigate continuity of the Nemytskii operator for certain classes of curves. The following definition
of the Nemytskii operator in a somewhat more abstract context on bundles over R allows e.g. for the
map f to be time-dependent.

Definition B.1 (Nemytskii operator).
Let I ⊂R and let X ,Y be normed vector bundles1 over I . Furthermore, let f : X → Y be a bundle map, i.e.
a fiberwise mapping that covers the identity on I , but which is not necessarily linear in the fibers. We
define the corresponding Nemytskii operator

F : Γ(X ) → Γ(Y ) : x 7→ f ◦x, (B.1)

mapping continuous sections of X to continuous sections of Y .

In the previous definition as well as in the following lemma, we need not restrict to vector bundles; we
shall also require the case that X is a trivial fiber bundle with a metric space as fiber (e.g. the bundle
Bρ
β

(I ; X ) in the context of Chapter 3). Recall that the space of sections Γ(X ) can be endowed with an
exponential growth distance (1.17) or norm (1.16), respectively. This turns Γ(X ) into a metric (or normed
linear) space denoted by Γρ(X ) with exponent ρ ∈R. The distance dρ(x1, x2) may be infinite for some
x1, x2 ∈ Γρ(X ) if X is a trivial metric fiber bundle. This is not a problem, since it is only used to obtain
(local) continuity estimates for sections such that dρ(x1, x2) <∞.

Lemma B.2 (Continuity of the Nemytskii operator).
Let X , Y be normed vector bundles over I =R≥0, or alternatively let X be a trivial fiber bundle of a metric
space. Let f ∈C 0(X ;Y ) be a continuous fiberwise mapping and let F : Γ(X ) → Γ(Y ) be defined as in B.1.
Let ρ1,ρ2 ∈R and assume that one of the following holds:

1For our purposes, a sufficient definition of a normed vector bundle π : X → R is that there exist local trivializations
τ : π−1(U ) →U ×F that are isometric with respect to the norms on X and the normed linear space F . Note that we canonically
have such trivializations by parallel transport, see (3.52) and Proposition 3.34.
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i. ρ2 > 0 and f is bounded into the normed vector bundle Y ;

ii. ρ2 ≥αρ1 and f is α-Hölder continuous with 0 <α≤ 1, uniformly with respect to the fibers.

Then F is continuous as a map Γρ1 (X ) → Γρ2 (Y ) and under ii, F is moreover α-Hölder continuous again.

Proof. We first prove the statement under assumption i . Fix x1 ∈ Γρ1 (X ), let ε > 0 be given, and let
x2 ∈ Γρ1 (X ) be arbitrary. As f is bounded and ρ2 > 0, we can choose a T > 0 such that

∀ t > T : ‖ f (x1(t ))− f (x2(t ))‖e−ρ2 t ≤ 2‖ f ‖e−ρ2 T ≤ ε.

This leaves only the compact interval [0,T ] for which we still have to show that ‖ f (x1(t ))− f (x2(t ))‖e−ρ2 t ≤
ε. Let us denote g : I → R : t 7→ e−ρ2 t , then the continuity estimate of f · g : X → Y is uniform on the
compact set x1([0,T ]). Hence, there exists a δ′ > 0 such that for all t ∈ [0,T ] and ξ2 ∈π−1(t ) ⊂ X ,

d(x1(t ),ξ2) ≤ δ′ =⇒ e−ρ2 t ‖ f (x1(t ))− f (ξ2)‖ ≤ ε.

We have that d(x1(t ), x2(t )) ≤ e |ρ1 T | dρ1 (x1, x2), so choosing δ= e−|ρ1 T |δ′ yields the required estimate for
dρ1 (x1, x2) ≤ δ. This proves that F is continuous at x1.

Secondly, assume ii and let Cα be the Hölder coefficient of f . Then we can estimate

‖F (x1)−F (x2)‖ρ2
= sup

t≥0
e−ρ2 t ‖ f (x1(t ))− f (x2(t ))‖

≤ sup
t≥0

e−ρ2 t Cα

(
dρ1 (x1, x2)eρ1 t )α =Cαdρ1 (x1, x2)α,

which shows that F is α-Hölder continuous again with coefficient Cα.

Corollary B.3. Let the assumptions of Lemma B.2 with condition i be satisfied. If f is fiberwise uniformly
continuous with continuity modulus independent of the fiber, then also F is uniformly continuous.

Proof. This follows easily: in the proof above, the uniform continuity on the compact set x1([0,T ]) can
be replaced by the uniform continuity modulus of f itself. This does not depend on x1, x2 anymore,
only on their distance, so it leads to a uniform continuity modulus of F .

Remark B.4. The previous results also hold under time inversion. That is, if we consider the interval
I =R≤0 and invert the inequalities for ρ1, ρ2 in conditions i and ii , then Lemma B.2 and Corollary B.3
still hold true. We use this time inverted version in Chapter 3. ♦



Appendix C

Exponential growth estimates

In this appendix we investigate the growth rate of higher order derivatives of a general flow on a
Riemannian manifold. Basically, if the growth of the tangent flow is proportional to exp(ρ t ), then the
growth of the r -th order derivative is of order exp(r ρ t ). This even extends to ‘fractional’ derivatives, that
is, the C k,α-norm (which includes α-Hölder continuity bounds) has this growth behavior for r = k +α.
These results will be used to obtain continuity and higher order smoothness of the persisting NHIM. The
particular exponential growth behavior exp(r ρ t ) will precisely prescribe the spectral gap condition: to
construct a contraction on the r -th derivative, the normal contraction of order exp(ρY t ) must dominate
the higher order exp(r ρX t ) along the invariant manifold, hence ρY < r ρX is required1.

These results are based on estimating variation of constants integrals and similar in spirit to Gronwall’s
lemma. We work on Riemannian manifolds, however. This complicates matters with a lot of technicali-
ties, but the basic ideas are still the same. We do require uniform bounds and bounded geometry of the
manifold, see Chapter 2. Let us first show the idea for a flow on Rn and then introduce some concepts
and notation to finally treat the general case.

Lemma C.1 (Exponential growth estimates for a flow).
Let Φt ,t0 ∈ C k≥1 be the flow of a time-dependent vector field v on Rm . Let v(t , ·) ∈ C k

b (Rm) with all
derivatives jointly continuous in (t , x) ∈ R×Rm and uniformly bounded by V < ∞. Suppose that
‖DΦt ,t0 (x)‖ ≤ C1 eρ(t−t0) for all x ∈ Rm , t ≥ t0 and fixed C1 > 0, ρ 6= 0. Then for each n, 1 ≤ n ≤ k, there
exists a bound Cn > 0 such that

∀x ∈Rm , t ≥ t0 : ‖DnΦt ,t0 (x)‖ ≤
{

Cn enρ(t−t0) if ρ > 0,

Cn eρ(t−t0) if ρ < 0.
(C.1)

Proof. Let D denote the partial derivative with respect to the spatial variable x ∈Rm . We suppress the
time dependence in the notation of v since we have the bound ‖Dn v‖ ≤V for all 1 ≤ n ≤ k, uniformly in
space and time.

Since Φt ,t0 is a flow, we have

DΦt0,t0 (x) =1 and DnΦt0,t0 (x) = 0, 2 ≤ n ≤ k. (C.2)

1We formulate all statements in this section with respect to exponentially bounded flows in the (more natural) forward time
direction. That is, we work with t ∈R≥t0 and typical exponents ρ > 0. In our applications in Chapter 3 we use the time-reversed
statements. See also Remark 1.18.
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For 1 ≤ n ≤ k we can write, suppressing arguments t0, x,

d

dt
DnΦt = Dn(v ◦Φt ) = Dv ◦Φt ·DnΦt +

n∑
l=2

Dl v ◦Φt ·Pl ,n
(
D1Φt , . . . ,Dn−1Φt ), (C.3)

where the Pl ,n are homogeneous, weighted polynomials as in Definition C.2 below. In the first equality,
the switching of partial derivatives is well-defined, because the spatial derivative in the middle expres-
sion is well-defined and the resulting function continuous. In the right-hand expression we have already
used Proposition C.3 and separated the homogeneous term with DnΦt (when l = 1). The result is a
linear differential equation for DnΦt with the inhomogeneous terms in the sum consisting of lower
order derivatives DiΦt , i < n, only.

For n = 1, statement (C.1) is already true by assumption and in that case we also see that (C.3) is a
homogeneous linear differential equation. Denote by Ψx (t , t0) the solution operator for this system
with initial point x ∈Rm , then

DΦt ,t0 (x) =Ψx (t , t0)
(
DΦt0,t0 (x)

)=Ψx (t , t0) ·1=Ψx (t , t0). (C.4)

This solution operator acts by left-composition on linear maps, so we read off that Ψx (t , t0) = DΦt ,t0 (x)
and find the estimate ‖Ψx (t , t0)‖ ≤ C1 eρ(t−t0). Now we turn to the induction step. For n > 1, we still
have essentially the same solution operator Ψx (t , t0) for the homogeneous part, only now acting by
composition on multilinear maps DnΦt ,t0 (x) ∈ Ln(Rm): the solution operator is not influenced by
considering multilinear maps, as Dv and Ψ act by linear composition from the left, essentially on
tangent vectors. Therefore, the same growth estimate for Ψx (t , t0) still holds.

The inhomogeneous terms in (C.3) depend only on the DiΦt , i < n and by the induction hypothesis we
can estimate ‖DiΦt‖ ≤Ci e i ρ t . Using variation of constants, the solution can now be written as

DnΦt (x) =
∫ t

t0

Ψx (t ,τ) ·
n∑

l=2
Dl v ◦Φτ ·Pl ,n

(
D1Φτ, . . . ,Dn−1Φτ

)
dτ, (C.5)

where the homogeneous part of the solution is zero because DnΦt0,t0 (x) = 0 for n > 1. Given that the
weighted degree of Pl ,n is n, we can directly estimate

‖DnΦt (x)‖ ≤
∫ t

t0

‖Ψx (t ,τ)‖
n∑

l=2

∥∥Dl v
∥∥‖Pl ,n

(
D1Φτ, . . . ,Dn−1Φτ

)‖ dτ

≤
∫ t

t0

C1 eρ(t−τ) V R
(
{Ci }i<n

)
enρ(τ−t0) dτ

=C1 V R
(
{Ci }i<n

) enρ(t−t0) −eρ(t−t0)

(n −1)ρ
. (C.6)

The bound R depends on finite sums and products of finite terms, so is finite again. When ρ > 0, the
denominator is positive and the numerator can be estimated by enρ(t−t0); when ρ < 0, the numerator
can be estimated by eρ(t−t0), adding a minus sign to both parts of the fraction. Thus, in both cases
(C.1) holds. This completes the induction step.

Before generalizing this lemma to Riemannian manifolds, we first refine some previous notation. Instead
of Rm , we more generally consider linear spaces V ,W and spaces Lk (V ;W ) of (multi)linear maps for the
(higher order) derivatives of maps f : V →W .
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Definition C.2 (Homogeneous weighted polynomial).
Let Pa,b(y1, . . . , yn) be a polynomial in the variables y1 to yn . We call P a homogeneous weighted
polynomial of degree (a,b) if it is a homogeneous polynomial of degree a and moreover, each term
y p1

1 . . . y pn
n has weighted degree

n∑
i=1

i ·pi = b. (C.7)

As a consequence, such a polynomial cannot have factors yn for n > b and the factor yb can only occur
as a term on itself when a = 1.

This definition can now be used to denote the higher derivatives of a composition of two functions f , g
on vector spaces.

Proposition C.3 (Higher order derivatives of compositions of functions).
Let the mapping x 7→ f (g (x), x) be given with f : V ×U →W and g : U →V two sufficiently differentiable
functions between vector spaces U ,V ,W . Then the k-th order derivative of this mapping with respect to x
is of the form ( d

dx

)k
f (g (x), x) = ∑

l ,m≥0
l+m≤k

(l ,m)6=(0,0)

Dl
1Dm

2 f (g (x), x) ·Pl ,k−m
(
D1g (x), . . . ,Dk−m g (x)

)
, (C.8)

where Pl ,k−m is a homogeneous weighted polynomial of degree (l ,k−m) with l higher order derivatives
Di g (x) in each term, and weighted degree k−m: the total number of derivatives that either produced an
additional Dg (x) term or differentiated an existing one.

Remark C.4. We will shorten the notation Pl ,k
(
D1g (x), . . . ,Dk g (x)

)= Pl ,k
(
D•g (x)

)
.

Remark C.5. Note that Dl
1Dm

2 f (g (x), x) is actually an element of the tensor product space W ⊗ (
V ∗)⊗l ⊗(

U∗)⊗m and Pl ,k−m an element of the (l ,k−m)-linear maps V ⊗l ⊗ (
U∗)⊗k−m , or (l ,k−m) tensors, so the

composition is indeed a mapping in W ⊗ (
U∗)⊗k =Lk (U ;W ), as expected. ♦

Proof. This is easily proven by induction. For k = 1 we have

d

dx
f (g (x), x) = D1 f (g (x), x) ·Dg (x)+D2 f (g (x), x),

which satisfies (C.8). For the induction step we have( d

dx

)k+1
f (g (x), x) = d

dx

∑
l ,m≥0

l+m≤k
(l ,m)6=(0,0)

Dl
1Dm

2 f (g (x), x) ·Pl ,k−m
(
D•g (x)

)

= ∑
l ,m≥0

l+m≤k
(l ,m)6=(0,0)

[
Dl+1

1 Dm
2 f (g (x), x) ·D1g (x) ·Pl ,k−m

(
D•g (x)

)
+Dl

1Dm+1
2 f (g (x), x) ·Pl ,k−m

(
D•g (x)

)
+Dl

1Dm
2 f (g (x), x) · d

dx
Pl ,k−m

(
D•g (x)

)]
= ∑

l ,m≥0
l+m≤k

(l ,m)6=(0,0)

[
Dl+1

1 Dm
2 f (g (x), x) ·Pl+1,k+1−m

(
D•g (x)

)
+Dl

1Dm+1
2 f (g (x), x) ·Pl ,k+m

(
D•g (x)

)
+Dl

1Dm
2 f (g (x), x) ·Pl ,k+1−m

(
D•g (x)

)]
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= ∑
l ,m≥0

l+m≤k+1
(l ,m)6=(0,0)

Dl
1Dm

2 f (g (x), x) ·Pl ,k+1−m
(
D•g (x)

)
.

This is again of the form (C.8): k −m = (k +1)− (m +1), so all terms can be absorbed in the new sum for
k +1.

Let us make a few remarks on the form of (C.8). The P0,m for m < k are zero, because then we have too
few derivatives with respect to x; we have P0,k = 1 though. After Definition C.2 it was already noted that
in a polynomial of weighted degree k, the factor yk can only occur as a term on itself, up to a constant
factor. More specifically in this case, Dk g (x) occurs exactly once, in the term

D1 f (g (x), x) ·Dk g (x).

This can easily be seen by direct calculation or induction. Finally, when the composition mapping is of
the form x 7→ f (g (x)), then we only have terms with m = 0 and all polynomials in (C.8) have weighted
degree k in that case.

The next step is to generalize Lemma C.1 to a Riemannian manifold (M , g ). Here we first need to
define what we mean by higher derivatives of the flow. The tangent flow DΦt is well-defined as a
mapping on TM , but higher derivatives live on higher order tangent bundles Tk M . These abstract
bundles make doing explicit estimates as in the proof of Lemma C.1 difficult. Instead, we reuse the
idea of Definition 2.9 and introduce a different representation of higher derivatives in terms of normal
coordinate charts.

Definition C.6 (Higher derivative on Riemannian manifolds).
Let M , N be Riemannian manifolds and f : M → N a smooth map. With the notation fx = exp−1

f (x) ◦ f ◦
expx of f represented in normal coordinate charts, we define for k ≥ 1 and x ∈ M the higher order
derivative

Dk f (x) = Dk fx (0) = Dk[
exp−1

f (x) ◦ f ◦expx

]
(0) (C.9)

as an element of Lk (Tx M ;T f (x)N ).

Remark C.7. Definition C.6 can be viewed as creating a more explicit representation of the jet bundle of
the trivial fiber bundle π : M ×N → M . A map f : M → N is a section of this trivial bundle and the k-jet
of f at a point x is fixed in terms of the derivatives in (C.9) up to order k, in the normal coordinate chart
centered at x. We shall see below that this representation is still a (global) bundle, while the explicit
choice of normal coordinate charts introduces a convenient norm to measure the jets. ♦

Let us make a few remarks on this choice of representation of higher derivatives. First of all, for k = 1 this
definition coincides with the ordinary tangent map, as Dexpx (0) = 1Tx M by the natural identification
T0(Tx M) ∼= Tx M . Furthermore, this representation of derivatives admits operator norms, and all this
behaves nicely under composition of maps by virtue of the property ( f ◦ g )x = fg (x) ◦ gx for local
coordinate charts:∥∥D2( f ◦ g )(x)

∥∥= ∥∥D2[ fg (x) ◦ gx
]
(0)

∥∥
= ∥∥D2 fg (x)(0)

(
Dgx (0),Dgx (0)

)+D fg (x)(0)
(
D2gx (0)

)∥∥
= ∥∥D2 f (g (x)) ·Dg (x)⊗2 +D f (g (x)) ·D2g (x)

∥∥
≤ ‖D2 f (g (x))‖ ·‖Dg (x)‖2 +‖D f (g (x))‖ ·‖D2g (x)‖,
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that is, these operator norms as defined via normal coordinate charts are truly norms and satisfy the
usual product rules for compositions of (multi)linear maps.

The operator norms are induced by the norms on the tangent spaces of TM , which in turn are induced
by the metric. These norms depend smoothly on the base point, so they glue together to a smooth
function ‖·‖ : TM →R≥0 that we will call a ‘bundle norm’ on the tangent bundle2 or sometimes refer to
as just a norm on TM . Higher derivatives can be viewed as partial sections of the vector bundle

Lk (TM ;TN ) = TN� (TM∗)⊗k . (C.10)

That is, we define Lk (TM ;TN ) as a bundle over M ×N with fiber Lk (Tx M ;Ty N ) over the point (x, y) ∈
M ×N . This is indicated by the operator�, which differs from the usual tensor product ⊗ in the sense
that the new bundle is constructed on the product of the base spaces instead of one common base.
Now the k-th order derivative (as in Definition C.6) of a map f : M → N is a section of the bundle (C.10)
restricted to the base submanifold Graph( f ) ⊂ M × N and the derivative Dk f (x) is the point in the
section over (x, f (x)). More generally, we can define vector bundles of (l ,k)-linear maps

Ll ,k (TM ;TN ) = (TN )⊗l � (TM∗)⊗k (C.11)

and the disjoint union of all these bundles. The bundle norms on TM and TN together naturally induce
bundle operator norms on these. From here on, we set M = N and assume that f =Φt is a flow.

To finally generalize Lemma C.1 to Riemannian manifolds, there is still one issue to tackle. When taking
the time-derivative as in (C.3), the target base point Φt (x) changes. This suggests that a covariant
derivative is required. The Ll ,k (TM ;TM) are smooth manifolds in a natural way, however, so both
the tangent vector d

dt DkΦt (x) and the differential of ‖·‖ are well defined in this interpretation and
independent of a connection, and certainly their product d

dt ‖DkΦt (x)‖ is. The tangent exponential
maps Dexp at x and Φt (x) together induce a local coordinate chart on Ll ,k (TM ;TM) in a neighborhood
of Ll ,k (Tx M ;TΦt (x)M). We will use these local coordinates for explicit calculations.

The dependence on the base point of the norms and normal coordinate charts in (C.9) introduces
additional terms when formulating equations (C.3) and (C.5) on a Riemannian manifold. Under the
assumption that (M , g ) is of bounded geometry, however, all these additional terms will be globally
bounded. Hence, these will only contribute to the overall constants Cn in Lemma C.1, but not influence
the basic result.

Lemma C.8 (Exponential growth estimates on a Riemannian manifold).
Let Φt ,t0 ∈ C k≥1 be the flow of a time-dependent vector field v on a Riemannian manifold (M , g ) of
(k+3)-bounded geometry. Let v(t , · ) ∈Xk

b(M) with all derivatives jointly continuous in (t , x) ∈R×M and
uniformly bounded by V <∞ with respect to Definition C.6. Suppose that ‖DΦt ,t0 (x)‖ ≤C1 eρ(t−t0) for all
x ∈ M , t ≥ t0 and fixed C1 > 0, ρ 6= 0. Then for each n, 1 ≤ n ≤ k there exists a bound Cn > 0 such that

∀x ∈ M , t ≥ t0 : ‖DnΦt ,t0 (x)‖ ≤
{

Cn enρ(t−t0) if ρ > 0,

Cn eρ(t−t0) if ρ < 0.
(C.12)

Proof. The proof is basically the same as the proof of Lemma C.1, with additional technicalities due to
M being a manifold. We will focus on these.

2Note that this is stronger than a Finsler manifold as the Finsler structure F : TM →R≥0 is allowed to be asymmetric, that is,
on each tangent space, F need only scale linearly for positive scalars. I did not investigate whether it is possible to generalize
this theory to Finsler manifolds.
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Equation (C.3) can be formulated in terms of the tangent normal coordinate chart

Dexp−1
y : TB(y ;δ) ⊂ TM → T(Ty M) ∼= (Ty M)2

with y =Φt (x) fixed. Note that we are finally interested in the growth behavior of t 7→ ‖DnΦt (x)‖; this is
defined in a coordinate-free way, so it is not influenced by our choice of intermediate coordinates. In
these normal coordinates, both the metric and its derivatives are bounded due to Theorem 2.4, and the
vector field is C k bounded by assumption. We have

d

dt
Dexp−1

y ◦DnΦt (x)

= d

dt
Dexp−1

y ◦Dn[
exp−1

Φt (x) ◦Φt ◦expx

]
(0)

= d

dt
Dexp−1

y ◦
n∑

l=1
Dl [exp−1

Φt (x) ◦expy

]
(0) ·Pl ,n

(
D•[exp−1

y ◦Φt ◦expx

]
(0)

)
.

This splits the dependence on t in the target base point Φt (x) from that in the derivatives DnΦt itself.
Note that the sum must be interpreted as a sum of terms in the single fiber Ln(Tx M ;Ty M) over the base
point (x, y). By using the coordinate map Dexp−1

y , we transferred the problem to fixed linear spaces,
which allows us to make sense of the differentiation with respect to t . In other words, Dexp−1

y induces
locally trivializing coordinates for Ln(Tx M ;TM) in a neighborhood of y with x fixed. As Dexp−1

y is linear
on the fibers, we can distribute it over the sum to further obtain

=
n∑

l=1

d

dt

[
Dexp−1

y ◦Dl [exp−1
Φt (x) ◦expy

]
(0) ·Pl ,n

(
D•[exp−1

y ◦Φt ◦expx

]
(0)

)]
= d

dt

[
Dexp−1

y ◦D
[

exp−1
Φt (x) ◦expy

]
(0) ·Dn[

exp−1
y ◦Φt ◦expx

]
(0)

]
+

n∑
l=2

d

dt

[
. . .

]
. (C.13)

In the last line, the homogeneous part is separated from the non-homogeneous terms as in (C.3).

Working out the details of the homogeneous part, we obtain3

d

dt

[
Dexp−1

y ◦D
[

exp−1
Φt (x) ◦expy

]
(0) ·Dn[

exp−1
y ◦Φt ◦expx

]
(0)

]
= d

dt

[
Dexp−1

y ◦D
[

exp−1
Φt (x) ◦expy

]
(0)

]
·DnΦt (x)

+D
[
Dexp−1

y

] ·Dn d

dt

[
exp−1

y ◦Φt ◦expx

]
(0)

= d

dt

[
Dexp−1

y ◦D
[

exp−1
Φt (x) ◦expy

]
(0)

]
·DnΦt (x)

+D
[
Dexp−1

y

] · n∑
l=1

Dl [Dexp−1
y ◦v ◦expy

]
(0) ·Pl ,n(D•Φt (x)).

Note that again all terms l ≥ 2 in the sum are inhomogeneous terms that we will add to those already
present in (C.13). The homogeneous term is some linear vector field acting (from the left) on DnΦt (x)
and it is precisely the vector field generating DΦt (x), which is the original case n = 1. Hence, we can
again define the operator Ψt ,t0

x as post-composition with DΦt (x) and write the flow of DnΦt (x) using a

3The time derivative of Dexp−1
y ◦D

[
exp−1

Φt (x)
◦expy

]
(0) actually turns out to be zero in local coordinates. This follows from

an analysis of the exponential map as the time-one geodesic flow in normal coordinates around y . This result is not relevant
for us, so we leave out this tedious calculation.
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variation of constants integral with all the non-homogeneous terms. These terms again contain only
lower order derivative flows DlΦt (x), l < n.

We can now take the operator norm of this expression. In principle we should be careful that this
bundle norm depends on the changing target point Φt (x). The normal coordinates were chosen around
y =Φt (x), however, and in these coordinates the derivative of the metric at the origin (corresponding
to y) is zero, hence the norm has zero derivative. We can thus simply apply the operator norm to the
variation of constants integral and obtain estimates as in (C.6). The additional factors introduced by
differentiation of normal coordinate transition maps are bounded by Lemma 2.6 under the assumption
that (M , g ) is of (k+3)-bounded geometry. The inhomogeneous terms still contain at least one factor
DlΦt (x), so the result in case ρ < 0 holds as well.

These exponential growth results can be extended further to uniform and Hölder continuity in the
highest derivatives. The Hölder continuity then is with respect to the growth rate (k+α)ρ, where k is the
order of the derivative and 0 <α≤ 1 the Hölder constant. Thus, α-Hölder continuity can be viewed as a
fractional derivative; Lipschitz continuity (when α= 1) can indeed be viewed as almost differentiability
to one higher order. The case α= 0 we shall identify with uniform continuity. Here we have no explicit
modulus of continuity, which requires an arbitrarily small additional µ> 0 in the exponent k ρ+µ to
compensate.

Remark C.9 (On using a global continuity modulus).
In the next lemma, as well as in Corollary C.12 below, we shall make abuse of notation in writing
expressions such as ‖s(x2)− s(x1)‖, where s is a section of a vector bundle, cf. (C.15), that is, we compare
objects that live in different fibers of a vector bundle4. This notation should be interpreted according
to Remark 2.12. That is, if x1, x2 are M-close in the spirit of Definition 2.8, then this is well-defined in
terms of local charts, and for continuity estimates this is equivalent to an estimate by identification
of the vector bundle over x1, x2 via parallel transport, cf. Proposition 2.13. If x1 and x2 are not close,
then we can use any choice of isometric identification of the vector bundle over these points, such as
the construction of parallel transport along solutions curves in Section 3.7.4. In this case the notation
can effectively be interpreted as an estimation by the sum of the norms of the separate terms with the
triangle inequality. When applying this lemma, we shall always have such an isometric identification
at hand, hence these arguments can be made rigorous, and the notation provides a sensible heuristic
then. ♦

Lemma C.10 (Exponential growth estimates with Hölder continuity).
Let Φt ,t0 ∈ C k≥1 be the flow of a time-dependent vector field v on a Riemannian manifold (M , g ) of
(k+3)-bounded geometry. Let D denote the partial derivative with respect to the spatial variable x ∈ M as
in Definition C.6 and let v(t , · ) ∈Xk,α

b,u (M), 0 <α≤ 1 with all derivatives jointly continuous in (t , x) ∈R×M.

Suppose that ‖DΦt ,t0 (x)‖ ≤C1 eρ(t−t0) for all x ∈ M , t ≥ t0 and fixed C1 > 0, ρ > 0.

Then in addition to the results of Lemma C.8, there exists a bound Ck,α > 0 such that

∀ t ≥ t0 : ‖DkΦt ,t0‖α ≤Ck,α e(k+α)ρ(t−t0). (C.14)

If instead v(t , · ) ∈Xk
b,u(M), i.e. the special caseα= 0, then for each µ> 0 there exists a continuity modulus

εk,µ such that
∀ t ≥ t0 : ‖DkΦt ,t0 (x2)−DkΦt ,t0 (x1)‖ ≤ εk,µ(d(x1, x2))e(k ρ+µ)(t−t0), (C.15)

4Note that the higher derivatives DkΦt (x) of a flow are actually interpreted as elements of a bundle of type (C.10). These
bundles are still naturally induced by the tangent bundles of underlying manifolds, so all bounded geometry techniques, such
as uniformity of normal coordinate charts, unique local trivializations by parallel transport, are induced on these bundles as
well.
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that is, x 7→ (
t 7→ DkΦt ,t0 (x)

)
is uniformly continuous in x, in ‖·‖k ρ+µ-norm.

Remark C.11. We restricted this lemma to the case ρ > 0 only. A result similar to that in C.8 for ρ < 0
could be obtained for completeness sake, but it clutters the already detailed proof, while we do not need
the result. ♦

Proof. The idea of the proof is essentially the same as that of Lemma C.8. The additional difficulty
is that (Hölder) continuity requires finite, non-differential estimates when comparing any two flows
starting from different initial points x1, x2 ∈ M .

Let d(x1, x2) < δM where δM is M-small as in Definition 2.8. We drop t0 from the notation and define
ξi (t ) =Φt (xi ), i = 1,2 as the solution curves with xi as initial conditions. We want to study the growth
behavior of

t 7→ DkΦt (x2)−DkΦt (x1). (C.16)

Note that this difference is defined with respect to coordinate charts at source and target that contain
x1, x2 and ξ1(t ), ξ2(t ), respectively, but not in general.

We denote by γt the unique shortest geodesic that connects ξ1(t) to ξ2(t) when d(ξ1(t),ξ2(t)) < δM .
Next, we set

Υt = DkΦt (x2) ·Π(γ0)⊗k −Π(γt ) ·DkΦt (x1) ∈Lk(
Tx1 M ;Tξ2(t )M

)
(C.17)

to be the difference of the respective k-th order derivative flows, parallel transported to matching spaces
at their source and target. It is easily verified that Υt satisfies initial conditions Υt0,t0 = 0 for any k ≥ 1.

Due to Proposition 2.13, the formulation in (C.17) with parallel transport to measure variation of the
flows is equivalent to measuring (C.16) in normal coordinate charts. Hence, if we study ‖Υt‖ in charts,
we may drop5 the parallel transport terms at the cost of an (unimportant) global factor in the estimates.
We assume that d(ξ1(t),ξ2(t)) < δM and study Υt in a normal coordinate chart covering both points.
Taking the difference of (C.3) with x1, x2 inserted, we see that Υt satisfies the differential equation

d

dt
Υt = Dv ◦Φt (x2) ·Υt + [

Dv ◦Φt (x2)−Dv ◦Φt (x1)
] ·DkΦt (x1)

+
k∑

l=2
Dl v ◦Φt (x2) ·Pl ,k

(
D•Φt (x2)

)− (x2 x1).

This equation provides a variation of constants integral for Υt based on the flow Ψx2 (t , t0):

Υt =
∫ t

t0

Ψx2 (t ,τ) · [Dv ◦Φτ(x2)−Dv ◦Φτ(x1)
] ·DkΦτ(x1)

+Ψx2 (t ,τ) ·
[ k∑

l=2
Dl v ◦Φτ(x2) ·Pl ,k

(
D•Φτ(x2)

)− (x2 x1)

]
dτ.

(C.18)

5We could include the parallel transport terms, repeat similar arguments as in the proof of Lemma C.8 and express
everything in (induced) normal coordinate charts, but this would clutter the proof here even more. These terms would all be
bounded and Lipschitz continuous by bounded geometry, hence not essentially alter the result.
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We proceed by induction over k. For k = 1 we only have the first term of the integrand. Using that Dv is
uniformly α-Hölder, we have

‖Υt‖ ≤
∫ t

t0

‖Ψx2 (t ,τ)‖‖Dv ◦Φτ(x2)−Dv ◦Φτ(x1)‖‖DΦτ(x1)‖ dτ

≤
∫ t

t0

C1 eρ(t−τ) ‖Dv‖α ‖Φτ(x2)−Φτ(x1)‖αC1 eρ(τ−t0) dτ

≤C 2
1 ‖Dv‖α eρ(t−τ)

∫ t

t0

(
C1 eρ(τ−t0) ‖x2 −x1‖

)α
dτ

≤C 2+α
1 ‖Dv‖α eρ(t−τ) ‖x2 −x1‖α eαρ(t−t0)

αρ
.

Next, in the induction step for k > 1, we get the additional terms from (C.18) in the integrand. These
are (up to constants) a product of the flow Ψ, Dl v ◦Φτ(x) and DiΦ(x)’s with weighted degree k. The
terms Dl v ◦Φτ(x) are uniformly α-Hölder continuous in x analogous to the case k = 1 above. Each of
the DiΦ(x)’s satisfies the Hölder estimate of this lemma by the induction hypothesis and the growth
estimates of Lemma C.1. Hence, for each term in the integrand, we obtain Hölder continuity with
respect to x with growth behavior at most eρ(t−τ) e(k+α)ρ(τ−t0). Integration then yields the stated result.

Finally, the uniformly continuous case is an extension along the same lines as Corollary B.3. The map
x 7→ Dl v ◦Φτ(x) is uniformly continuous when measured in ‖·‖µ-norm and by induction the alternative
result (C.15) follows.

Finally, we extend the Hölder continuous growth estimates to a parameter dependent version. This is
formulated to exactly fit the context of derivatives of TX with respect to y ∈ Bρ

η (I ;Y ), such as in (3.43b).
Note that Remark C.9 applies again.

Corollary C.12 (Exponential growth with Hölder continuity and a parameter).
Assume the setting of Lemma C.10. Let the vector field v furthermore depend on a third variable y ∈ Y such
that Dl

x v(t , x, · ) ∈Cα
b,u for all 0 ≤ l ≤ k, uniformly in t , x and that all original bounds are uniform in y as

well. Let η ∈ Bρ(R;Y ) denote a curve in Y and Φt ,t0
η the flow of v(t , · ,η(t )). Assume that η 7→ (

t 7→Φ
t ,t0
η (x)

)
is uniformly Lipschitz with respect to the distance function dρ on curves C (R≥t0 ; X ).

Then the map η 7→ DkΦη is Hölder continuous in the sense that there exists a bound Ck,α,Y > 0 such that

∀ t ≥ t0, x ∈ X : ‖η 7→ DkΦ
t ,t0
η (x)‖α ≤CY ,α e(k+α)ρ(t−t0). (C.19)

In case of uniform continuity (i.e. α= 0), then for each µ> 0 there exists a continuity modulus εk,µ,Y such
that

∀ t ≥ t0, x ∈ X : ‖DkΦ
t ,t0
η2

(x)−DkΦ
t ,t0
η1

(x)‖ ≤ εk,µ,Y (d(η1,η2))e(k ρ+µ)(t−t0). (C.20)

In both cases we interpret the continuity moduli as globally defined using Remark 2.12.

Proof. The proof closely follows that of Lemma C.10; let us indicate the differences.

We define the variation
Υt = DkΦt

η2
(x) ·Π(γ0)⊗k −Π(γt ) ·DkΦt

η1
(x) (C.21)

and study it by a variation of constants integral in local charts, similar to (C.18). In this case we obtain

Υt =
∫ t

t0

Ψη2 (t ,τ) ·
([

Dv
(
τ,Φτη2

(x),η2(τ)
)−Dv

(
τ,Φτη1

(x),η1(τ)
)] ·DkΦτη2

(x)

+
[ k∑

l=2
Dl v

(
τ,Φτη2

(x),η2(τ)
) ·Pl ,k

(
D•Φτη2

(x)
)− (2 1)

])
dτ. (C.22)
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As in Lemma C.10, the factors Ψη2 (t ,τ) and DlΦτη2
(x) satisfy appropriate exponential growth conditions.

By induction over l < k the maps η 7→ DlΦt
η(x) are α-Hölder continuous, while all Dl v are uniformly

α-Hölder in x, y , and η 7→ DlΦt
η(x) is uniformly Lipschitz by assumption, so η 7→ Dl v

(
t ,Φt

η(x),η(t)
)

is also α-Hölder when measured in ‖·‖αρ-norm (or in ‖·‖µ-norm in case of uniform continuity, see
Appendix B).

In each term of the integrand, we can estimate the variation with respect to η as a sum of the variations
with respect to each factor (a product rule). The factor that is being varied adds eαρ(τ−t0) (or eµ(τ−t0)

in case α= 0) to the overall growth estimate. The proof is completed by inserting all these estimates
into (C.22) and again using the fact that we have a finite number of globally bounded terms.



Appendix D

The fiber contraction theorem

In this appendix, we give a proof of the fiber contraction theorem. This result is originally due to Hirsch
and Pugh [HP70]; the proof presented here is taken from Vanderbauwhede [Van89, p. 105]. The fiber
contraction theorem is a convenient general tool to obtain convergence of functions in C k -norm when
a direct contraction in C k -norm is not available. Instead, one inductively constructs contractions for the
k-th derivative with all lower order derivatives assumed fixed. If this contraction depends continuously
on the lower order derivatives, then the fiber contraction theorem can be applied to conclude that the
sequence of the function together with its derivatives converges to a fixed point. With the additional
theorem on the differentiability of limit functions, it can then be concluded that the sequence converges
in C k -norm.

Theorem D.1 (Fiber contraction theorem).
Let X be a topological space, (Y ,d) a complete metric space and let F : X ×Y → X ×Y be a fiber mapping,
that is, F (x, y) = (

F1(x),F2(x, y)
)
, with the following properties:

i. F1 has a unique, globally attracting fixed point x? ∈ X , that is,

∀x ∈ X : lim
n→∞F n

1 (x) = x?;

ii. there is a neighborhood U ⊂ X of x?, such that F2 : U ×Y → Y is a uniform contraction on Y with
contraction factor q < 1; let y? ∈ Y denote the unique fixed point of F2(x?, · ) : Y → Y , as given by the
Banach fixed point theorem;

iii. the mapping F2( · , y?) : X → Y is continuous.

If only properties i and ii are assumed, then (x?, y?) is the unique fixed point of F . If moreover iii holds,
then this fixed point is globally attractive.

Proof. The point (x?, y?) is clearly the unique fixed point of F , where property i implies uniqueness of
x? as fixed point of F1 and ii uniqueness of y? under F2(x?, · ).

The point x? is by assumption attractive under F1, thus for the final conclusion of global attractivity, it
remains to show that y → y? under F .

Let (x, y) ∈ X ×Y be arbitrary and consider the sequence (xn , yn) = F n(x, y) for n ≥ 0. Since xn → x∗ ∈U ,
there exists an N ∈N such that xn ∈U for all n ≥ N . By shifting the sequence (xn , yn), we can assume
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without loss of generality that xn ∈U for all n ≥ 0 and use property ii to estimate

d(yn+1, y?) = d(F2(xn , yn),F2(x?, y?))

≤ d(F2(xn , yn),F2(xn , y?))+d(F2(xn , y?),F2(x?, y?))

≤ q d(yn , y?)+αn . (D.1)

On the other hand, αn = d(F2(xn , y?),F2(x?, y?)) → 0 as n → ∞ from properties i and iii . Let αk =
supn≥k αn , then we also have αk → 0.

For each k ∈N, let δk,k = d(yk , y?) and recursively define δn+1,k = q δn,k +αk . From (D.1) we see that
d(yn , y?) ≤ δn,k when n ≥ k. Now the map f : δ 7→ q δ+α is a contraction for any α ∈ R, so it has a
unique, attractive fixed point δ?(α) and solving the equation f (δ?) = δ? yields

δ? = α

1−q
.

Let ε> 0 be given and choose k large enough that αk < 1
2 (1−q)ε. As limn→∞δn,k = δ?k we see that there

exists some N such that
∀ n ≥ N : δn,k < 2δ?k = 2αk

1−q
< ε.

From this we conclude that d(yn , y?) < ε for all n ≥ N .

The following theorem is quite standard. We shall extend it to smooth manifolds and higher derivatives,
though.

Theorem D.2 (Differentiability of limit functions).
Let Y be a Banach space and let C k (Rn ;Y ) denote the space of C k functions Rn → Y equipped with
the weak Whitney topology. Let { fn}n≥0 be a sequence in C 1(Rn ;Y ) that converges to f ∈C 0(Rn ;Y ) with
respect to the C 0 topology, and assume that there is a function g ∈C 0(Rn ;L(Rn ;Y )) such that D fn → g .

Then D f = g , or in other words, fn → f in C 1(Rn ;Y ) with respect to the weak Whitney topology.

Proof. By the fundamental theorem of calculus we have

fn(x + t h) = fn(x)+
∫ t

0

d

dτ
fn(x +τh) dτ= fn(x)+

∫ t

0
D fn(x +τh) ·h dτ.

Uniform convergence of D fn → g on the compact set {x+τh | τ ∈ [0, t ]} allows us to take the limit n →∞
inside the integral to obtain

f (x + t h) = f (x)+
∫ t

0
g (x +τh) ·h dτ,

and by differentiation with respect to t we conclude that g (x) ·h is the directional derivative of f at x
along h.

Note that g (x) : Rn → Y is a bounded linear operator by assumption, so let us verify that it is the total
derivative, D f (x) = g (x), that is,

lim
h→0

‖ f (x +h)− f (x)− g (x) ·h‖
‖h‖ = 0.

Using the mean value theorem, we have

‖ f (x +h)− f (x)− g (x) ·h‖ ≤ sup
ξ∈[0,1]

∥∥g (x +ξh)− g (x)
∥∥‖h‖

and g is continuous, so indeed differentiability holds and D f (x) = g (x).
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Remark D.3. The statement that f is differentiable at x is local, so this result immediately translates to
maps C 1(X ;Y ) with X a smooth manifold by considering a local coordinate chart around x ∈ X .

This theorem could probably be generalized even further such that X , Y are allowed to be Banach
manifolds. The fact that g is continuous linear by assumption mitigates possible convergence problems
when having to consider infinitely many independent partial derivatives. We should be careful though,
since the weak Whitney (or compact-open) topology is not clearly defined anymore when X is infinite-
dimensional. ♦

Corollary D.4. Assume the setting of Theorem D.2. Let { fn}n≥0 be a sequence in C k≥2(Rn ;Y ) that con-
verges to f in C k−1(Rn ;Y ) and let Dk fn → g converge in C 0(Rn ;Lk (Rn ;Y )). Then fn → f converges in
C k (Rn ;Y ).

This is a trivial extension of Theorem D.2 when using the natural identification L(Rn ;Lk−1(Rn ;Y )) ∼=
Lk (Rn ;Y ).
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Appendix E

Nonlinear variation of flows

In this appendix we collect two results on variation of nonlinear flows. The first is a generalization of
Lagrange’s variation of constants formula and the second is an application of it to calculate the derivative
of a flow with respect to parameters. Both results are formulated for fully nonlinear flows.

The classical variation of constants integral due to Lagrange is well known. Although Lagrange applied
this method to the nonlinear problem of orbital mechanics, a less known result of Alekseev [Ale61] (see
also [LL69, p. 78]) generalizes the variation of constants integral to the full nonlinear case.

Theorem E.1 (Nonlinear variation of constants).
Let X be a smooth manifold and let Φt ,t0 (x) be the flow generated by the time-dependent vector field
v(t , x), locally Lipschitz in x. Let r (t , x) be an arbitrary (not necessarily small) perturbation, locally
Lipschitz in x as well. Then Φt ,t0

r (x) is the flow generated by v + r if and only if it satisfies the nonlinear
variation of constants formula

Φ
t ,t0
r (x) =Φt ,t0 (x)+

∫ t

t0

DΦt ,τ(Φτ,t0
r (x))r (τ,Φτ,t0

r (x)) dτ. (E.1)

Proof. Using uniqueness of solutions, it is sufficient to show that (E.1) satisfies the differential equation
and initial conditions Φt ,t

r (x) = x. The latter follows automatically from Φt ,t (x) = x. For the first part, we
differentiate

d

dτ

[
Φt ,τ ◦Φτ,t0

r (x)
]
= ∂

∂τ
Φt ,τ(y)

∣∣∣
y=Φτ,t0

r (x)
+DΦt ,τ(Φτ,t0

r (x)) · d

dτ
Φ
τ,t0
r (x)

=−DΦt ,τ(Φτ,t0
r (x)) · v(τ,Φτ,t0

r (x))

+DΦt ,τ(Φτ,t0
r (x)) · (v + r )(τ,Φτ,t0

r (x))

= DΦt ,τ(Φτ,t0
r (x)) · r (τ,Φτ,t0

r (x)).

This expression yields (E.1) when integrated from t0 to t .

Notice that (E.1) looks ill-defined on a manifold, but should be read as integration from the pointΦt ,t0 (x)
along the vector field defined by the integrand, which is indeed, for each τ ∈ [t0, t ], exactly defined to
be the tangent vector to the curve τ 7→Φt ,τ ◦Φτ,t0

r (x), making the equation self-consistent. If (X , g ) is a
Riemannian manifold, then this formula yields the distance estimate

d
(
Φ

t ,t0
r (x),Φt ,t0 (x)

)≤ ∫ t

t0

∥∥DΦt ,τ(Φτ,t0
r (x))r (τ,Φτ,t0

r (x))
∥∥ dτ. (E.2)

As a differential variant of the previous result, we state the following.
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Theorem E.2 (Differentiation of a flow).
Let Φt ,t0

s (x0) be a flow on a manifold X , defined by a vector field vs(t , x) that also depends on time and an
external parameter s ∈R. Let (s, x) 7→ vs(t , x) ∈C 1

b with derivative jointly continuous in (s, t , x). Then the
derivative of the flow with respect to s is given by

d

ds
Φ

t ,t0
s (x0) =

∫ t

t0

DΦt ,τ
s (x(τ))

d

ds
vs(τ, x(τ)) dτ, (E.3)

for any fixed t , t0, and where x(τ) =Φτ,t0
s (x0).

See [DK00, Thm. B.3] for a proof of the formula for differentiation of a flow with respect to a parameter.
This is a slightly modified case where the vector field is time-dependent. Theorem A.6 and Remark A.7
show that the result can be generalized to the non-autonomous case and differentiable time-dependence
of v is not required.



Appendix F

Riemannian geometry

In this appendix we recall standard facts from Riemannian geometry and establish some notational
conventions. This appendix is targeted at the reader who has basic knowledge of Riemannian manifolds,
but wants to have a quick refresh. For more detailed expositions see for example [Jos08; GHL04],
or [Lan95] for a more abstract presentation in the context of Banach manifolds. We shall not try to be
exhaustive or as general as possible in this overview.

A Riemannian manifold (M , g ) is a pair of a smooth (or at least C 1, respectively C 2 for defining curvature)
manifold together with a metric g : a family of positive-definite bilinear forms gx on each tangent space
Tx M . The metric is a generalization of the Euclidean inner product on Rn and gx depends in a smooth
way on the point x ∈ M in the manifold. The metric can be used to measure angles and lengths of
tangent vectors, so we can define the length of a piecewise C 1 curve γ : [a,b] → M as

l (γ) =
∫ b

a

√
gγ(t )(γ′(t ),γ′(t )) dt .

This length functional induces the distance function

d(x, y) = inf
γ

l (γ) (F.1)

on M , where the infimum is taken over all piecewise C 1 curves γ connecting the points x and y . This
turns M into a metric space.

Simple examples of Riemannian manifolds are Rn with the standard Euclidean inner product and the
sphere Sn−1 ⊂Rn with the induced metric on its tangent bundle. Due to the Nash embedding theorem,
any C k≥3 Riemannian manifold can actually be realized as a submanifold of Rn equipped with the
induced metric.

Each Riemannian manifold (M , g ) has an associated linear connection, or, covariant derivative ∇ on the
tangent bundle TM . This so-called Levi-Civita connection is uniquely defined by the requirements that
it is torsion-free and compatible with the metric, i.e.

∇X Y −∇Y X = [X ,Y ] and X g (Y , Z ) = g (∇X Y , Z )+ g (Y ,∇X Z )

for all smooth vector fields X ,Y , Z on M . The connection is given in local coordinates xi by the
Christoffel symbols Γi

j k ,

∇∂ j ∂k = Γi
j k ∂i ,
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where we used the Einstein summation convention for the repeated index i . The connection can be
extended to the tensor bundle of M so that it satisfies the Leibniz rule.

A connection, more generally on a vector bundleπ : E → M , can also be viewed as a choice of a horizontal
subbundle in TE . There is a naturally defined vertical subbundle Vert(E) ⊂ TE where Vert(E)ξ = TξEx

for ξ ∈ Ex =π−1(x). A horizontal bundle Hor(E ) is any subbundle complementary to the vertical bundle,
so

TE = Hor(E)⊕Vert(E).

This definition of a connection is related to the definition via the covariant derivative. The horizontal
bundle precisely corresponds to the tangent plane to a section s of E that is flat at a given point
x ∈ M :

Hor(E)s(x) = Im
(
Ds(x)

) ⇐⇒ (∇• s)(x) = 0.

The Levi-Civita connection induces two important concepts: the geodesic flow and parallel transport.
Intuitively, the geodesic flow says how to follow a straight line from an initial point along a given
direction, while parallel transport defines how to keep a tangent vector fixed while carrying it along a
path1. Both maps are defined in local coordinates as solutions of (subtly different) differential equations
involving the Christoffel symbols.

The geodesic flow Υt is a flow on the tangent bundle TM and defined in local coordinates xi by

ẋi = v i ,

v̇ i =−Γi
j k (x) v j vk .

(F.2)

Here, the v i denote the induced additional coordinates on the tangent bundle. This geodesic flow need
not be complete, that is, defined for all times. However, by the Hopf–Rinow theorem, the geodesic flow
is complete if and only if M is complete as a metric space with respect to (F.1). In the following we shall
assume that M is complete to simplify the exposition.

If we restrict the geodesic flow map to the tangent space Tp M at a fixed point p ∈ M and to time t = 1,
and finally project onto M , then we obtain the exponential map

expp =π◦Υ1|Tp M : Tp M → M .

We have Dexpp (0p ) = 1Tp M , so by the inverse function theorem, expp is a local diffeomorphism at
0p . The local inverse ϕx = exp−1

x of the exponential map can be viewed as a coordinate chart since
Tp M ∼=Rn isometrically. An explicit identification would require a choice of orthonormal basis in Tp M ,
which we shall refrain from.

Such coordinates are called normal coordinates, and locally around the point p these coordinates
make M resemble Rn as close as possible, in the sense that the metric at p in these coordinates is
equal to the Euclidean metric and the Christoffel symbols are zero. The exponential map is only a local
diffeomorphism, and generally there is a maximum radius r > 0 such that expp : B(0;r ) ⊂ Tp M → M is
a diffeomorphism onto its image. This is called the injectivity radius rinj(p) of M at the point p. The
global injectivity radius of M is then defined as

rinj(M) = inf
p∈M

rinj(p).

1If the path is a geodesic, then parallel transport carries the initial velocity vector to the velocity vector along the entire path.
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If M is noncompact then this global injectivity radius need not be positive. The shortest path from p ∈ M
to any point x within distance rinj(p) is uniquely realized by one geodesic curve. In normal coordinates
these curves are rays emanating from the origin. That is, let v = exp−1

p (x) and γ(t) = expp (t v) with
t ∈ [0,1], then d(p, x) = l (γ) = ‖v‖.

Let γ : [a,b] → M be a C 1 curve, then parallel transport is a linear isometry (i.e. it preserves the metric g )

Π(γ) : Tγ(a)M → Tγ(b)M (F.3)

between the tangent spaces at the endpoints. We use the notation Π(γ|ta) for parallel transport along a
part of the curve. Parallel transport is defined in local coordinates xi by the differential equation

d

dt
Π(γ|ta)i =−Γi

j k (γ(t )) γ′(t ) j Π(γ|ta)k with Π(γ|aa) =1. (F.4)

In (F.4) the xi are local coordinates around the point γ(t) with additional induced coordinates ∂i on
the tangent bundle. The representation Π(γ|ta)i is defined by Π(γ|ta) =Π(γ|ta)i ∂i . Put more abstractly,
parallel transport defines a horizontal extension of a vector v ∈ Tγ(a)M to a section of the pullback
bundle γ∗(TM), that is, a vector field v(t ) defined along γ(t ), which has covariant derivative zero.

On a Riemannian manifold there is the concept of curvature. A manifold is flat, i.e. it has zero curvature,
if it is (locally) isometric to Rn . The Riemann curvature R measures non-flatness on an infinitesimal
level. It is given by

R(X ,Y ) Z =∇X ∇Y Z −∇Y ∇X Z −∇[X ,Y ]Z ,

which measures how much the direction of a vector Z changes when parallel transporting it around
an infinitesimal loop spanned by the directions X ,Y . There is a relation between the curvature and
parallel transport that is important to us. If we consider holonomy, that is, parallel transport along a
closed loop γ, then the deficit Π(γ)−1 is (heuristically put) equal to the curvature form R integrated
over any surface enclosed by γ. This relation can be seen as an application of Stokes’ theorem and the
differential statement is that the curvature R is the generator of the infinitesimal holonomy group [AS53;
RW06].
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β
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C k
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definition in bounded geometry, 34
function space, 26
topology, 25

C k
b,u , 26

C f ,α, 27
Hor, Vert, 148
I , 25, 85
J , 25, 104
K , 37
Ll ,k , 135
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N (normal bundle), 48
Pa,b , 133
S, 93, 111
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T˜Bρ
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Ux , 95
X, 26
D˜ , 90, see also formal derivative
Γ

Christoffel symbols, 26, 34, 147
fiber bundle section, 26
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Π, 26, 149, see also parallel transport
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Θ, 89
β (approximate solution distance), 83
δx, δy, δx0, 92
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ε f , 26, see also continuity modulus
η (tubular neighborhood size), 48, 62
µ, 90, 110
ν (mollifier size), 50, 79

ρ, 18, 27, see also exponential growth rate
ρa (restriction operator), 106
ρX , ρY , 79
σ (approximation parameter), 50, 62
ζ (vector field change), 79
exp, 32, 148
f̃ , 79
hx , 42
r , 18, 62, see also r -normal hyperbolicity
rinj, 30, 148, see also injectivity radius
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approximate solution, 83
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definition for manifold, 30
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bundle norm, 135
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comparison

of methods, 12
of results, 12, 64
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contraction operator, 14, 86
convolution smoothing, 50
coordinate transition map, 33

graph change under, 51, 52
on a Banach manifold, 105

curvature, 30, 38, 149
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discrete, 1, 17

exponential growth numbers, 27, 79
exponential growth rate, 5, 17, 27, 131

fiber contraction theorem, 141
fixed point, 2
forced smoothness, 19, 63
formal tangent bundle, 93

topology, 94

geodesic flow, 34, 148
graph transform, 13

Hölder continuity, 19, 27
higher order derivative, 15, 110, 131

chain rule, 133
on a Riemannian manifold, 134

holonomy, 38, 97
hyperbolic fixed point, 2, 13

immersed submanifold, 21
implicit function theorem, 124
injectivity radius, 30, 71, 148
invariant fibration, see stable (unstable) fibration

Lyapunov exponent, 11, 18, see also exponential
growth rate

Lyapunov–Perron method, see Perron method

mollifier function, 50

Nemytskii operator, 129
NHIM, 2, see also normally hyperbolic invariant

manifold
non-autonomous system, 20, 115
noncompactness, 8, 16, 20, 67
nonholonomic system, 10
normal coordinates, 32, 105, 148
normal hyperbolicity, 17

history, 11

r -normal hyperbolicity, 18, 50
normally hyperbolic invariant manifold, 1

definition, 17
parameter dependence, 116
persistence, 3, 62

overflow invariance, 23, 116
a priori, 117
persistence, 118

parallel transport, 39, 149
differential equation, 39, 149
of a frame, 97

partition of unity (uniform), 38
Perron method, 11, 14, 87
persistence, see normally hyperbolic invariant

manifold
non-, 8, 70

quasi-isometry, 47

Riemannian manifold, 147

Shil’nikov bifurcation, 22
smoothness, 3, 6, 15, 90

forced, see forced smoothness
loss of, 50, 62, 78
non-C∞, 5, 8, 19
of a flow, 126

spectral gap condition, 3, 5, 18
stable (unstable) fibration, 4, 120
stable (unstable) manifold, 2, 13, 120

trivial bundle, 56, 62

uniform tubular neighborhood, 48
uniformly embedded submanifold, 42, 70
uniformly immersed submanifold, 42
uniformly locally finite cover, 37

of a submanifold, 44
unstable manifold, see stable manifold
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